【題目】已知點,(其中)是曲線上的兩點,,兩點在軸上的射影分別為點,且.
(1)當(dāng)點的坐標(biāo)為時,求直線的方程;
(2)記的面積為,梯形的面積為,求的范圍.
【答案】(1);(2).
【解析】
(1)首先根據(jù)點坐標(biāo)與曲線方程求出點,點,點的坐標(biāo),然后根據(jù)點坐標(biāo)直接求出直線的方程;
(2)首先求出三角形面積和梯形面積的表達式,然后設(shè)直線方程與曲線方程聯(lián)立,利用韋達定理求出的取值范圍.
(1)由題知點的坐標(biāo)為,
因為,所以點,
故點,,
因為點,點在曲線上,滿足曲線方程,
故,,
故點,,
所以直線的方程為;
(2)設(shè)直線方程為,
聯(lián)立,
因為直線與曲線相交于兩點,
所以,
根據(jù)韋達定理有,
所以,
原點到直線的距離,
所以,
,
故,
由題知,
又因為代入曲線方程有,有,
所以,
所以,
故.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校組織高考組考工作,為了搞好接待組委會招募了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛運動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表;并要求列聯(lián)表的獨立性檢驗,能否在犯錯誤的概率不超過的前提下認為性別與喜愛運動有關(guān)?
喜愛運動 | 不喜愛運動 | 總計 | |
男 |
| ||
女 |
|
| |
總計 |
|
(2)如果從喜歡運動的女志愿者中(其中恰有人會外語),抽取名負責(zé)翻譯工作,則抽出的志愿者中人恰有一人勝任翻譯工作的概率是多少?
參考公式:,其中.
參考答數(shù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在第十五次全國國民閱讀調(diào)查中,某地區(qū)調(diào)查組獲得一個容量為的樣本,其中城鎮(zhèn)居民人,農(nóng)村居民人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民人,農(nóng)村居民人.
(1)填寫下面列聯(lián)表,并判斷是否有的把握認為,經(jīng)常閱讀與居民居住地有關(guān)?
城鎮(zhèn)居民 | 農(nóng)村居民 | 合計 | |
經(jīng)常閱讀 | |||
不經(jīng)常閱讀 | |||
合計 |
(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出人,參加一次閱讀交流活動,若活動主辦方從這位居民中隨機選取人作交流發(fā)言,求被選中的位居民都是經(jīng)常閱讀居民的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)若函數(shù)在上是增函數(shù),求正數(shù)的取值范圍;
(2)當(dāng)時,設(shè)函數(shù)的圖象與x軸的交點為,,曲線在,兩點處的切線斜率分別為,,求證:+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為1的正方形,MD⊥ABCD,NB⊥ABCD.且MD=NB=1.則下列結(jié)論中:
①MC⊥AN
②DB∥平面AMN
③平面CMN⊥平面AMN
④平面DCM∥平面ABN
所有假命題的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高中年級開設(shè)了豐富多彩的校本課程,甲、乙兩班各隨機抽取了5名學(xué)生的學(xué)分,用莖葉圖表示.,分別表示甲、乙兩班各自5名學(xué)生學(xué)分的標(biāo)準(zhǔn)差,則_______.(填“”“<”或“=”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為 (為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且曲線與恰有一個公共點.
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)已知曲線上兩點,滿足,求面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com