假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(元)呈線性相關(guān)關(guān)系,且有如下的統(tǒng)計(jì)資料:
使用年限x(年)23456
維修費(fèi)用y(元)2.23.85.56.57
則x和y之間的線性回歸方程為( 。
A、
?
y
=2.04x-0.57
B、
?
y
=2x-1.8
C、
?
y
=x+1.5
D、
?
y
=1.23x+0.08
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:根據(jù)所給的數(shù)據(jù),做出橫標(biāo)和縱標(biāo)的平均數(shù),寫(xiě)出樣本中心點(diǎn),根據(jù)線性回歸方程一定過(guò)樣本中心點(diǎn),得到結(jié)果.
解答: 解:∵
.
x
=
1
5
(2+3+4+5+6)=4,
.
y
=
1
5
(2.2+3.8+5.5+6.5+7)=5,
∴這組數(shù)據(jù)的樣本中心點(diǎn)是(4,5)
代入驗(yàn)證,可得A滿足.
故選:D.
點(diǎn)評(píng):本題考查求線性回歸方程,是一個(gè)運(yùn)算量比較大的問(wèn)題,解題時(shí)注意平均數(shù)的運(yùn)算不要出錯(cuò),注意系數(shù)的求法,運(yùn)算時(shí)要細(xì)心,不然會(huì)前功盡棄.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若已知點(diǎn)(a,b)在函數(shù)y=
k
x
(k>0)的第一象限的圖象上,且
1
a
+
4
b
的最小值為4,則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以雙曲線
x2
9
-
y2
16
=1的左頂點(diǎn)為圓心,且與雙曲線的漸近線相切的圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn.若Sn+1=4Sn-3,則q=
 
,a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
4-x2
的定義域是A,g(x)=2(x-4)(x+3)的定義域?yàn)锽=(a,+∞),值域?yàn)椋?,+∞)
(1)若不等式2x2+mx+n<0的解集是A,求m,n的值;
(2)求集合A∩(∁RB)(R為實(shí)數(shù)集)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某游戲分四個(gè)階段,只有上一階段獲勝,才能繼續(xù)參加下一階段的比賽,否則就被淘汰,選手每闖過(guò)一個(gè)階段,個(gè)人記10分,否則記0分.甲、乙兩個(gè)選手參加了此游戲,已知甲每個(gè)階段獲勝的概率為
1
2
,乙每個(gè)階段獲勝的概率為
3
4

(Ⅰ)求甲、乙兩人最后積分之和為20的概率;
(Ⅱ)設(shè)甲的最后積分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線的實(shí)軸和虛軸的4個(gè)端點(diǎn)都在一圓上,則此雙曲線兩漸近線的夾角為( 。
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
y2
a2
-
x2
b2
=1(a>0,b>0)的漸近線與拋物線y=x2+1 相切,則該雙曲線的離心率等于( 。
A、
5
2
B、
5
C、
6
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a4+b4+c4=2c2(a2+b2),則角C=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案