【題目】如圖,三棱柱中,側面,已知,,點是棱的中點.

1)求證:平面;

2)求二面角的余弦值;

3)在棱上是否存在一點,使得與平面所成角的正弦值為,若存在,求出的值;若不存在,請說明理由.

【答案】(1)證明見解析(2)(3)存在,.

【解析】

1)根據(jù)線面垂直的判定定理,即可證得平面.

2)以為原點,分別以,的方向為軸的正方向建立如圖所示的空間直角坐標系,求得平面和平面的法向量,利用向量的夾角公式,即可求解;

3)假設存在點,設,根據(jù),得到的坐標,結合平面的法向量為列出方程,即可求解.

1)由題意,因為,,∴,

又∴,∴,

側面,∴.

又∵,,平面

∴直線平面.

2)以為原點,分別以,的方向為軸的正方向建立如圖所示的空間直角坐標系,

則有,,,,

設平面的一個法向量為

,

,∴,令,則,∴

設平面的一個法向量為,,,

,∴,令,則,∴

,,,∴.

設二面角,則.

∴設二面角的余弦值為.

3)假設存在點,設,∵,,

,∴

設平面的一個法向量為

,得.

,∴,∴.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】對某校高三年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取名學生作為樣本,得到這名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

15

0.30

29

2

合計

1

1)求出表中及圖中的值;

2)若該校高三學生人數(shù)有500人,試估計該校高三學生參加社區(qū)服務的次數(shù)在區(qū)間內的人數(shù);

3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間內的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),.

1)若是函數(shù)的極值點,求的極小值;

2)若對任意的實數(shù)a,函數(shù)上總有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,側面是邊長為2的等邊三角形且垂直于底面,,的中點.

1)求證:直線平面;

2)點在棱上,且二面角的余弦值為,求直線與底面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,且.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,其導函數(shù)為.

1)討論函數(shù)的單調性;

2)若,關于的不等式恒成立,求實數(shù)的取值范圍;

3)若函數(shù)有兩個零點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點到直線的距離比到點的距離大

1)求動點的軌跡的方程;

2上兩點,為坐標原點,,過分別作的兩條切線,相交于點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在直角坐標系xOy中,設傾斜角為α的直線lt為參數(shù))與曲線Cθ為參數(shù))相交于不同的兩點A,B

)若α,求線段AB中點M的坐標;

)若|PA·PB|=|OP,其中P2,),求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為常數(shù), ,函數(shù), (其中是自然對數(shù)的底數(shù)).

(1)過坐標原點作曲線的切線,設切點為,求證: ;

(2)令,若函數(shù)在區(qū)間上是單調函數(shù),求的取值范圍.

查看答案和解析>>

同步練習冊答案