20.已知A={α|α=k×45°+15°,k∈Z},當k=k0(k0∈Z)時,A中的一個元素與角-255°終邊相同,若k0取值的最小正數(shù)為a,最大負數(shù)為b,則a+b=(  )
A.-12B.-10C.-4D.4

分析 寫出與角-255°終邊相同的角的集合,求出最小正角與最大負角,結(jié)合集合A的答案.

解答 解:與角-255°終邊相同的角的集合為{β|β=n×360°-255°,n∈Z},
取n=1時,β=105°,此時A={α|α=k×45°+15°,k∈Z}中的k0取最小正值為2;
取n=0時,β=-255°,此時A={α|α=k×45°+15°,k∈Z}中的k0取最大負值為-6.
∴a+b=2-6=-4.
故選:C.

點評 本題考查終邊相同角的概念,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.已知兩點M(2,-3),N(-3,-2),斜率為k的直線l過點P(1,1)且與線段MN相交,則k的取值范圍是(-∞,-4]∪[$\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.對于△ABC,有如下命題:
①若$\frac{tanA}{tanB}=\frac{a^2}{b^2}$,則△ABC一定為等腰三角形;
②若$\frac{{{b^2}+{c^2}-{a^2}}}{{{a^2}+{c^2}-{b^2}}}=\frac{b^2}{a^2}$,則△ABC一定為等腰三角形;
③若sin2A+cos2B=1,則△ABC一定為等腰三角形;
④若sin2A+sin2B+cos2C<1,則△ABC一定為鈍角三角形
其中錯誤命題的序號是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知$tan(α+β)=\frac{2}{5}$,$tanβ=\frac{1}{3}$,則$tan(α-\frac{π}{4})$的值為( 。
A.$\frac{8}{9}$B.-$\frac{8}{9}$C.$\frac{1}{17}$D.$\frac{16}{17}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某種產(chǎn)品的年銷售量y與該年廣告費用支出x有關(guān),現(xiàn)收集了4組觀測數(shù)據(jù)列于下表:
x(萬元)1456
y(萬元)30406050
現(xiàn)確定以廣告費用支出x為解釋變量,銷售量y為預報變量對這兩個變量進行統(tǒng)計分析.
(1)已知這兩個變量滿足線性相關(guān)關(guān)系,試建立y與x之間的回歸方程;
(2)假如2014年廣告費用支出為10萬元,請根據(jù)你得到的模型,預測該年的銷售量y.
(3)根據(jù)公式R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,計算相關(guān)指數(shù)R2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當$\overrightarrow{a}$∥$\overrightarrow$時,求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若a=$\sqrt{3},b=2,sinB=\frac{{\sqrt{6}}}{3}$,求$f(x)+4cos(2A+\frac{π}{6})(x∈[0,\frac{π}{4}])$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}的前n項和為Sn,a1≠0,常數(shù)λ>0,且λa1an=S1+Sn對一切正整數(shù)n都成立.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)a1>0,λ=100,當n為何值時,數(shù)列$\{lg\frac{1}{a_n}\}$的前n項和最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.數(shù)列{an}中,已知對任意自然數(shù)n,a1+2a2+22a3+…+2n-1an=22n-1,則a12+a22+a32+…+an2=(  )
A.3(4n-1)B.3(2n-1)C.4n-1D.(2n-1)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.三棱錐P-ABC中,PA⊥平面ABC,$PA=2AC=2\sqrt{3}$,AB=1,∠ABC=60°,則三棱錐P-ABC的外接球的表面積為16π.

查看答案和解析>>

同步練習冊答案