已知函數(shù)f(x)=sin(
1
2
x+θ)-
3
cos(
1
2
x+θ)(|θ|<
π
2
)的圖象關(guān)于y軸對(duì)稱,則y=f(x)在下列哪個(gè)區(qū)間上是減函數(shù)(  )
A、(0,
π
2
B、(-
π
2
,-
π
4
C、(
π
2
,π)
D、(
2
,2π)
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用
專題:計(jì)算題,三角函數(shù)的圖像與性質(zhì)
分析:根據(jù)函數(shù)f(x)的圖象關(guān)于y軸對(duì)稱,|θ|<
π
2
,可求出θ=-
π
6
,從而有f(x)=-2cos
1
2
x,即可求出函數(shù)f(x)在(-
π
2
,-
π
4
)上為減函數(shù).
解答: 解:因?yàn)楹瘮?shù)f(x)的圖象關(guān)于y軸對(duì)稱,所以當(dāng)x=0時(shí),f(x)取得最大(或最。┲,此時(shí)
f(x)=sinθ-
3
cosθ=2sin(θ-
π
3
),因?yàn)閨θ|<
π
2
,所以,θ=-
π
6
,
所以f(x)=sin(
1
2
x-
π
6
)-
3
cos(
1
2
x-
π
6
)=2sin(
1
2
x-
π
2
)=-2cos
1
2
x,
所以函數(shù)f(x)在(-
π
2
,-
π
4
)上為減函數(shù).
故選:B.
點(diǎn)評(píng):本題主要考察了三角函數(shù)中的恒等變換應(yīng)用,考察了三角函數(shù)的圖象與性質(zhì),屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A、B、C的對(duì)邊分別為a、b、c,若2acosC+ccosA=b,則sinA+sinB的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=R,集合A={x|1<x<4},集合B={x|2≤x<5},則A∩(∁UB)=( 。
A、{x|1≤x<2}
B、{x|x<2}
C、{x|x≥5}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lg
1-x
1+x

(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(x)≤1,求實(shí)數(shù)x的取值范圍;
(3)關(guān)于x的方程10f(x)=ax有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
y≥1
y≤2x-1
x≤2
,則目標(biāo)函數(shù)z=x2+y2的最小值為( 。
A、
2
B、2
C、1
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,以正方形ABCD的對(duì)角線AC為折痕,使△ADC和△ABC折成相垂直的兩個(gè)面,點(diǎn)O為AC的中點(diǎn).
(1)求證:DO⊥OB;
(2)求BD與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),x∈D,如果對(duì)于定義域D內(nèi)的任意實(shí)數(shù)x,對(duì)于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級(jí)類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級(jí)類增周期函數(shù),求實(shí)數(shù)a的取值范圍;
(2)已知T=1,y=f(x)是[0,+∞)上m級(jí)類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時(shí),f(x)=2x,求實(shí)數(shù)m的取值范圍;
(3)是否存在實(shí)數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級(jí)類周期函數(shù),若存在,求出實(shí)數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
6
x+1,x≤1
lnx,x>1
,則方程f(x)=ax恰有兩個(gè)不同的實(shí)根時(shí),實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案