8.已知正項數(shù)列{an}的奇數(shù)項a1,a3,a5,…a2k-1…構(gòu)成首項a1=1等差數(shù)列,偶數(shù)項構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{2n+1}}{{a}_{2n}}$,Tn=b1.b2…bn,求正整數(shù)k,使得對任意n∈N*,均有Tk≥Tn

分析 (Ⅰ)由題意:$\left\{\begin{array}{l}a_2^2={a_1}{a_3}\\ 2{a_5}={a_4}+{a_7}\end{array}\right.$,設(shè)a1,a3,a5,…a2k-1,…的公差為d,求出$\left\{\begin{array}{l}{a_2}=2\\ d=3\end{array}\right.$,繼而得到通項公式,
(Ⅱ)求出bn=$\frac{3n+4}{{2}^{n+1}}$,判斷出數(shù)列{bn}單調(diào)性,即可求出答案.

解答 解:(Ⅰ)由題意:$\left\{\begin{array}{l}a_2^2={a_1}{a_3}\\ 2{a_5}={a_4}+{a_7}\end{array}\right.$,
設(shè)a1,a3,a5,…a2k-1,…的公差為d,
則a3=1+d,a5=1+2d,a7=1+3d,a4=2a2,代入$\left\{\begin{array}{l}a_2^2=1(1+d)\\ 1+d=2{a_2}\end{array}\right.$,
又a2>0,
故解得$\left\{\begin{array}{l}{a_2}=2\\ d=3\end{array}\right.$,
故數(shù)列{an}的通項公式為${a_n}=\left\{\begin{array}{l}\frac{3n-1}{2},n為奇數(shù)\\{2^{\frac{n}{2}}},n為偶數(shù)\end{array}\right.$,
(Ⅱ)${b_n}=\frac{3n+1}{2^n}$,顯然bn>0,
∵$\frac{{{b_{n+1}}}}{b_n}=\frac{{\frac{3n+4}{{{2^{n+1}}}}}}{{\frac{3n+1}{2^n}}}=\frac{3n+4}{6n+2}<1$,
∴{bn}單調(diào)遞減,又${b_1}=2,{b_2}=\frac{7}{4},{b_3}=\frac{10}{8},{b_4}=\frac{13}{16}$,
∴b1>b2>b3>1>b4>b5>…
∴k=3時,使得對任意n∈N*,均有Tk≥Tn

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知tanα=3,計算:
(Ⅰ)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(Ⅱ)sinα•cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在(1-2x)4的展開式中含x3項的系數(shù)為-32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)x,y滿足x-y+xy≥2,則|x+y|的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.記數(shù)列{an}的前n項和為Sn,若存在實數(shù)M>0,使得對任意的n∈N*,都有|Sn|<M,則稱數(shù)列{an}為“和有界數(shù)列”.下列命題正確的是( 。
A.若{an}是等差數(shù)列,且首項a1=0,則{an}是“和有界數(shù)列”
B.若{an}是等差數(shù)列,且公差d=0,則{an}是“和有界數(shù)列”
C.若{an}是等比數(shù)列,且公比|q|<1,則{an}是“和有界數(shù)列”
D.若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{\frac{1}{2}}x,x>0}\end{array}\right.$,則f(-3)=$\frac{1}{8}$,f[f(3)]=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知sinα=-$\frac{2}{3}$,則cos(2α-π)的值為-$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.log93+log45log58的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)函數(shù) f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{-lnx,x>0}\end{array}\right.$,若f(m)>f(-m),則實數(shù)m的取值范圍是(-∞,-1)∪(0,1).

查看答案和解析>>

同步練習(xí)冊答案