3.記數(shù)列{an}的前n項(xiàng)和為Sn,若存在實(shí)數(shù)M>0,使得對任意的n∈N*,都有|Sn|<M,則稱數(shù)列{an}為“和有界數(shù)列”.下列命題正確的是( 。
A.若{an}是等差數(shù)列,且首項(xiàng)a1=0,則{an}是“和有界數(shù)列”
B.若{an}是等差數(shù)列,且公差d=0,則{an}是“和有界數(shù)列”
C.若{an}是等比數(shù)列,且公比|q|<1,則{an}是“和有界數(shù)列”
D.若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1

分析 求出等差數(shù)列的前n項(xiàng)和公式,取d>0即可判斷A錯誤;舉例首項(xiàng)不為0判斷B錯誤;求出等比數(shù)列的前n項(xiàng)和,由絕對值不等式證明C正確;舉例說明D錯誤.

解答 解:對于A,若{an}是等差數(shù)列,且首項(xiàng)a1=0,當(dāng)d>0時,${S}_{n}=\frac{n(n-1)d}{2}=\frac{d{n}^{2}}{2}-\frac{dn}{2}$,當(dāng)n→+∞時,|Sn|→+∞,
則{an}不是“和有界數(shù)列”,故A錯誤;
對于B,若{an}是等差數(shù)列,且公差d=0,Sn=na1,當(dāng)a1≠0時,當(dāng)n→+∞時,|Sn|→+∞,
則{an}不是“和有界數(shù)列”,故B錯誤;
對于C,若{an}是等比數(shù)列,且公比|q|<1,${S}_{n}=\frac{{a}_{1}(1-{q}^{n})}{1-q}=\frac{{a}_{1}}{1-q}-\frac{{a}_{1}}{1-q}{q}^{n}$,|Sn|=|$\frac{{a}_{1}}{1-q}-\frac{{a}_{1}}{1-q}{q}^{n}$|<|$\frac{{a}_{1}}{1-q}$|+|$\frac{{a}_{1}}{1-q}{q}^{n}$|$<2|\frac{{a}_{1}}{1-q}|$.
則{an}是“和有界數(shù)列”,故C正確;
對于D,若{an}是等比數(shù)列,且{an}是“和有界數(shù)列”,則{an}的公比|q|<1或q=-1,故D錯誤.
故選:C.

點(diǎn)評 本題是新定義題,考查了等差數(shù)列和等比數(shù)列的應(yīng)用,對題意的理解是解答此題的關(guān)鍵,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.△ABC的三個內(nèi)角分別記為A,B,C,若tanAtanB=tanA+tanB+1,則cosC的值是( 。
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓O:x2+y2=2,圓M:(x-a)2+(y-a+4)2=1.若圓M上存在點(diǎn)P,過點(diǎn)P作圓O的兩條切線,切點(diǎn)為A、B,使得四邊形PAOB為正方形,則實(shí)數(shù)a的取值范圍為[$2-\frac{\sqrt{2}}{2},2+\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex(alnx+$\frac{2}{x}$+b),其中a,b∈R,e≈2.71828自然對數(shù)的底數(shù).
(1)若曲線y=f(x)在x=1的切線方程為y=e(x-1),求實(shí)數(shù)a,b的值;
(2)①若a=-2時,函數(shù)y=f(x)既有極大值,又有極小值,求實(shí)數(shù)b的取值范圍;
②若a=2,b≥-2,若f(x)≥kx對一切正實(shí)數(shù)x恒成立,求實(shí)數(shù)k的最大值(用b表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanA;    
(Ⅱ)若c=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項(xiàng)數(shù)列{an}的奇數(shù)項(xiàng)a1,a3,a5,…a2k-1…構(gòu)成首項(xiàng)a1=1等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{2n+1}}{{a}_{2n}}$,Tn=b1.b2…bn,求正整數(shù)k,使得對任意n∈N*,均有Tk≥Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知正項(xiàng)數(shù)列{an}的奇數(shù)項(xiàng)a1,a3,a5,…a2k-1,…構(gòu)成首項(xiàng)a1=1等差數(shù)列,偶數(shù)項(xiàng)構(gòu)成公比q=2的等比數(shù)列,且a1,a2,a3成等比數(shù)列,a4,a5,a7成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前2n項(xiàng)和S2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)點(diǎn)C(2a+1,a+1,2)在點(diǎn)P(2,0,0),A(1,-3,2),B(8,-1,4)確定的平面上,則a的值為( 。
A.8B.16C.22D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2},π})$),sinβ=-$\frac{12}{13}$,β是三象限角,求cos(β-α)的值.

查看答案和解析>>

同步練習(xí)冊答案