精英家教網 > 高中數學 > 題目詳情

已知橢圓C的中心在原點,一個焦點為F(0,),且長軸長與短軸長的比是∶1.
 
(1)求橢圓C的方程;
(2)若橢圓C上在第一象限的一點P的橫坐標為1,過點P作傾斜角互補的兩條不同的直線PA,PB分別交橢圓C于另外兩點A,B,求證:直線AB的斜率為定值.

(1)=1(2)見解析

解析(1)設橢圓C的方程為=1(a>b>0).由題意得 
解得a2=4,b2=2.所以橢圓C的方程為=1.
(2)證明:由題意知,兩直線PA,PB的斜率必存在,設PB的斜率為k.又由(1)知,P(1,),則直線PB的方程為yk(x-1).由 
得(2+k2)x2+2k(k)x+(k)2-4=0.
A(xA,yA),B(xB,yB),
xB=1·xB,
同理可得xA,
xAxB,yAyB=-k(xA-1)-k(xB-1)=.
所以kAB為定值

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設拋物線的焦點為,點,線段的中點在拋物線上. 設動直線與拋物線相切于點,且與拋物線的準線相交于點,以為直徑的圓記為圓
(1)求的值;
(2)證明:圓軸必有公共點;
(3)在坐標平面上是否存在定點,使得圓恒過點?若存在,求出的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

給定橢圓C:+=1(a>b>0),稱圓心在原點O,半徑為的圓是橢圓C的“準圓”.若橢圓C的一個焦點為F(,0),其短軸上的一個端點到F的距離為.
(1)求橢圓C的方程和其“準圓”的方程.
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線l1,l2使得l1,l2與橢圓C都只有一個交點,且l1,l2分別交其“準圓”于點M,N.
①當P為“準圓”與y軸正半軸的交點時,求l1,l2的方程;
②求證:|MN|為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知中心在原點的橢圓C的一個焦點為F(4,0),長軸端點到較近焦點的距離為1,A(x1,y1),B(x2,y2)(x1≠x2)為橢圓上不同的兩點.
(1)求橢圓C的方程.
(2)若x1+x2=8,在x軸上是否存在一點D,使||=||?若存在,求出D點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的離心率為,右焦點到直線的距離為
(1)求橢圓的方程;
(2)過橢圓右焦點F2斜率為)的直線與橢圓相交于兩點,為橢圓的右頂點,直線分別交直線于點,線段的中點為,記直線的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知雙曲線的中心為原點,左、右焦點分別為、,離心率為,點是直線上任意一點,點在雙曲線上,且滿足.
(1)求實數的值;
(2)證明:直線與直線的斜率之積是定值;
(3)若點的縱坐標為,過點作動直線與雙曲線右支交于不同的兩點、,在線段上去異于點、的點,滿足,證明點恒在一條定直線上.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直線,拋物線,已知點在拋物線上,且拋物線上的點到直線的距離的最小值為

(1)求直線及拋物線的方程;
(2)過點的任一直線(不經過點)與拋物線交于、兩點,直線與直線相交于點,記直線,的斜率分別為,, .問:是否存在實數,使得?若存在,試求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

拋物線的方程為,過拋物線上一點()作斜率為的兩條直線分別交拋物線兩點(三點互不相同),且滿足).
(1)求拋物線的焦點坐標和準線方程;
(2)設直線上一點,滿足,證明線段的中點在軸上;
(3)當=1時,若點的坐標為,求為鈍角時點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在平面直角坐標系xOy中,已知對于任意實數k,直線(k+1)x+(k)y-(3k)=0恒過定點F.設橢圓C的中心在原點,一個焦點為F,且橢圓C上的點到F的最大距離為2+.
(1)求橢圓C的方程;
(2)設(m,n)是橢圓C上的任意一點,圓Ox2y2r2(r>0)與橢圓C有4個相異公共點,試分別判斷圓O與直線l1mxny=1和l2mxny=4的位置關系.

查看答案和解析>>

同步練習冊答案