6.已知復數(shù)z滿足(1+2i)z=i,其中i為虛數(shù)單位,則復數(shù)z的虛部為$\frac{1}{5}$.

分析 利用復數(shù)的除法運算化為a+bi(a,b∈R)的形式,則答案可求

解答 解:∵(1+2i)z=i,
∴z=$\frac{i}{1+2i}$=$\frac{i(1-2i)}{5}$=$\frac{2}{5}$+$\frac{i}{5}$,
∴復數(shù)z的虛部為$\frac{1}{5}$.
故答案為$\frac{1}{5}$

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

16.若a>0,b>0,4a+b=ab.
(Ⅰ)求a+b的最小值;
(Ⅱ)當a+b取得最小值時,a,b的值滿足不等式|x-a|+|x-b|≥t2-2t對任意的x∈R恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥BD,PA=AC=2AD=4,AB=BC=2$\sqrt{5}$,M,N分別為PD,PB,CD的中點.
(1)求證:平面MBE⊥平面PAC;
(2)求三棱錐B-AME的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500元的員工屬于學徒階段,沒有營銷經(jīng)驗,若進行營銷將會失;高于4500元的員工是具備營銷成熟員工,進行營銷將會成功.現(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分為兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知命題p:?x0∈R,使tanx0=2;,命題q:?x∈R,都有x2+2x+1>0,則(  )
A.命題p∨q為假命題B.命題p∧q為真命題
C.命題p∧(¬q)為真命題D.命題p∨(¬q)為假命題
E.命題p∨q為假命題   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知函數(shù)f(x)=x|x-2|,則不等式f(2-ln(x+1))>f(3)的解集為{x|-1<x<$\frac{1}{e}$-1}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.一個幾何體的三視圖如所示,則該幾何體的外接球表面積為( 。
A.B.C.10πD.20π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.斐波那契數(shù)列{an}滿足:${a_1}=1,{a_2}=1,{a_n}={a_{n-1}}+{a_{n-2}}({n≥3,n∈{N^*}})$.若將數(shù)列的每一項按照下圖方法放進格子里,每一小格子的邊長為1,記前n項所占的格子的面積之和為Sn,每段螺旋線與其所在的正方形所圍成的扇形面積為cn,則下列結(jié)論錯誤的是( 。
A.${S_{n+1}}=a_{n+1}^2+{a_{n+1}}•{a_n}$B.a1+a2+a3+…+an=an+2-1
C.a1+a3+a5+…+a2n-1=a2n-1D.4(cn-cn-1)=πan-2•an+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,在直三棱柱ABC-A1B1C1中,AB=1,BC=2,BB1=3,∠ABC=90°,點D為側(cè)棱BB1上的動點,當AD+DC1最小時,三棱錐D-ABC1的體積為$\frac{1}{3}$.

查看答案和解析>>

同步練習冊答案