【題目】

已知函數(shù)f(x)=xln xx.

(Ⅰ)求函數(shù)f(x)的極值;

(Ⅱ)若x>0,f(x)+ax2≤0成立,求實數(shù)a的取值范圍.

【答案】(1) 當(dāng)x1時,函數(shù)f(x)有極小值,極小值為f(1)=-1,無極大值. (2)

【解析】試題分析:(1) x∈(0,+∞),f′(x)=ln x,討論f′(x)的符號,求出f(x)的單調(diào)區(qū)間,從而求出函數(shù)的極值;(2)x>0,f(x)+ax2≤0成立通過變量分離轉(zhuǎn)化為a在(0,+∞)上恒成立問題即可.

試題解析:

(Ⅰ)依題意,x∈(0,+∞),f′(x)=ln x

f′(x)=0,得x=1,

當(dāng)x∈(0,1)時,f′(x)<0,函數(shù)f(x)單調(diào)遞減,當(dāng)x∈(1,+∞)時,f′(x)>0,函數(shù)f(x)單調(diào)遞增,

∴當(dāng)x=1時,函數(shù)f(x)有極小值,極小值為f(1)=-1,無極大值.

(Ⅱ)x>0,f(x)+ax2≤0,a,

g(x)=,

g′(x)=-

當(dāng)0<x<e2時,g′(x)<0,當(dāng)x>e2時,g′(x)>0,

g(x)在(0,e2]上是減函數(shù),在[e2,+∞)上是增函數(shù),

g(x)ming(e2)==-,

a,a的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線與雙曲線的漸近線交于兩點,設(shè)為雙曲線上任一點,若為坐標(biāo)原點),則下列不等式恒成立的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若直角坐標(biāo)平面內(nèi)兩點P,Q滿足條件:①PQ都在函數(shù)yf(x)的圖象上;②P,Q關(guān)于原點對稱,則稱(P,Q)是函數(shù)yf(x)的一個“伙伴點組”(點組(P,Q)(Q,P)看作同一個“伙伴點組”).已知函數(shù)f(x)有兩個“伙伴點組”,則實數(shù)k的取值范圍是(  )

A. (,0) B. (0,1)

C. D. (0,+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市擬招商引資興建一化工園區(qū),新聞媒體對此進行了問卷調(diào)查,在所有參與調(diào)查的市民中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如表所示:

支持

保留

不支持

30歲以下

900

120

280

30歲以上(含30歲)

300

260

140

(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取部分市民做進一步調(diào)研(不同態(tài)度的群體中亦按年齡分層抽樣),已知從“保留”態(tài)度的人中抽取了19人,則在“支持”態(tài)度的群體中,年齡在30歲以上的人有多少人被抽;

(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取6人做進一步的調(diào)研,將此6人看作一個總體,在這6人中任意選取2人,求至少有1人在30歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線E (a>0,b>0)的漸近線方程為3x±4y=0,且過焦點垂直x軸的直線與雙曲線E相交弦長為,過雙曲線E中心的直線與雙曲線E交于A,B兩點,在雙曲線E上取一點C(與A,B不重合),直線AC,BC 的斜率分別為k1,k2,則k1k2等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐A-BCDE中,側(cè)棱AD⊥底面BCDE,底面BCDE是直角梯形,DE∥BC,BC⊥CD,BC=2AD=2DC=2DE=4,H,I分別是AD,AE的中點.

(Ⅰ)在AB上求作一點F,BC上求作一點G,使得平面FGI∥平面ACD;

(Ⅱ)求平面CHI將四棱錐A-BCDE分成的兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:

(1)試由此圖估計該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認(rèn)為,工資低于4500。元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗,若進行營銷將會失敗;高于4500元的員工是具備營銷成熟員工,基進行營銷將會成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動。活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元。試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時,試判斷函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著國家二孩政策的全面放開,為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機構(gòu)用簡單隨機抽樣方法從不同地區(qū)調(diào)查了100位育齡婦女,結(jié)果如下表.

非一線

一線

總計

愿生

45

20

65

不愿生

13

22

35

總計

58

42

100

K2,得K2.

參照下表,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

正確的結(jié)論是( )

A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為生育意愿與城市級別有關(guān)

B. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為生育意愿與城市級別無關(guān)

C. 99%以上的把握認(rèn)為生育意愿與城市級別有關(guān)

D. 99%以上的把握認(rèn)為生育意愿與城市級別無關(guān)

查看答案和解析>>

同步練習(xí)冊答案