【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為(t為參數(shù)),曲線C的參數(shù)方程為(θ為參數(shù)).
(1)當時,求直線l與曲線C的普通方程;
(2)若直線l與曲線C交于A,B兩點,直線l傾斜角的范圍為(0,],且P點的直角坐標為(0,2),求的最小值.
【答案】(1);(x+1)2+(y﹣1)2=1(2)
【解析】
(1)將代入直線l的參數(shù)方程,消去參數(shù)t即可得到直線l的普通方程,由曲線C的參數(shù)方程消去參數(shù)θ即可得到曲線C的普通方程;
(2)利用參數(shù)的幾何意義結(jié)合正弦型函數(shù)的圖象及性質(zhì)即可得解.
(1)∵,
∴直線l的參數(shù)方程為,消掉參數(shù)t,可得直線l的普通方程為,
∵C的參數(shù)方程為(θ為參數(shù))
∴可得(x+1)2+(y﹣1)2=1,即曲線C的普通方程為(x+1)2+(y﹣1)2=1.
(2)將l的參數(shù)方程為(t為參數(shù))代入圓的方程(x+1)2+(y﹣1)2=1得t2+2(sinα+cosα)t+1=0,
設A,B所對應的參數(shù)分別為t1,t2,
則|PA||PB|=|t1t2|=1,|PA|+|PB|=|t1+t2|=2|sinα+cosα|,
所以,
當時,的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線,曲線(為參數(shù)),以坐標原點為極點,以軸的正半軸為極軸建立極坐標系.
(1)求的極坐標方程;
(2)射線的極坐標方程為,若分別與交于異于極點的兩點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的虛軸的一個頂點為,左頂點為,雙曲線的左、右焦點分別為,,點為線段上的動點,當取得最小值和最大值時,的面積分別為,,若,則雙曲線的離心率為( ).
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計圖.則下列說法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,有下列4個命題:
①若,則的圖象關(guān)于直線對稱;
②與的圖象關(guān)于直線對稱;
③若為偶函數(shù),且,則的圖象關(guān)于直線對稱;
④若為奇函數(shù),且,則的圖象關(guān)于直線對稱.
其中正確的命題為 .(填序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動直線與與橢圓交于、兩不同點,且的面積,其中為坐標原點
(1)若動直線垂直于軸.求直線的方程;
(2)證明:和均為定值;
(3)橢圓上是否存在點,,,使得三角形面積若存在,判斷的形狀;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:的焦點為,過焦點做傾斜角為的120°的直線交于,兩點,為坐標原點,.
(1)求拋物線的方程;
(2)過拋物線焦點,且與坐標軸不垂直的直線l交拋物線于,兩點,,在拋物線上,且,,若,,,四點都在圓上,求圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:是無窮數(shù)列,若存在正整數(shù)k使得對任意,均有則稱是近似遞增(減)數(shù)列,其中k叫近似遞增(減)數(shù)列的間隔數(shù)
(1)若,是不是近似遞增數(shù)列,并說明理由
(2)已知數(shù)列的通項公式為,其前n項的和為,若2是近似遞增數(shù)列的間隔數(shù),求a的取值范圍:
(3)已知,證明是近似遞減數(shù)列,并且4是它的最小間隔數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com