某工廠有名工人,現(xiàn)接受了生產(chǎn)型高科技產(chǎn)品的總任務.已知每臺型產(chǎn)品由型裝置和型裝置配套組成,每個工人每小時能加工型裝置或型裝置.現(xiàn)將工人分成兩組同時開始加工,每組分別加工一種裝置(完成自己的任務后不再支援另一組).設加工型裝置的工人有人,他們加工完型裝置所需時間為,其余工人加工完型裝置所需時間為(單位:小時,可不為整數(shù)).
(1)寫出、的解析式;
(2)寫出這名工人完成總任務的時間的解析式;
(3)應怎樣分組,才能使完成總任務用的時間最少?

(1),,);
(2);
(3)加工型裝置,型裝置的人數(shù)分別為

解析試題分析:(1)根據(jù)定義求出函數(shù)的解析式,并求出函數(shù)的定義域;(2)對兩個函數(shù)作差,比較的大小,根據(jù)相應的的取值范圍確定的解析式;(3)考查函數(shù)在每段定義域上的單調(diào)性,并求出函數(shù)相應的最小值,從而確定加工兩種不同的零件的人數(shù).
試題解析:(1)由題意知,需加工型裝置4000個,加工型裝置3000個,所用工人分別為人和(
人,∴,
,,)           4分
(2),
,∴,
時,,,
時,,,
                             9分
(3)完成總任務所用時間最少即求的最小值,
時,遞減,∴,
,此時,                           11分
時,遞增,∴
,此時,                           13分
,
∴加工G型裝置,H型裝置的人數(shù)分別為86、130或87、129.          14分
考點:1.分段函數(shù);2.分段函數(shù)的單調(diào)性與最值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

集合A是由適合以下性質(zhì)的函數(shù)構成的:對于定義域內(nèi)任意兩個不相等的實數(shù),都有.
(1)試判斷=是否在集合A中,并說明理由;
(2)設ÎA且定義域為(0,+¥),值域為(0,1),,試寫出一個滿足以上條件的函數(shù)的解析式,并給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(Ⅰ)若函數(shù)上至少有一個零點,求的取值范圍;
(Ⅱ)若函數(shù)上的最大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

把長為10cm的細鐵絲截成兩段,各自圍成一個正方形,求這兩個正方形面積之和的最小值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù)
(1)求函數(shù)的解析式;
(2)設函數(shù),其中.若函數(shù)僅在處有極值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關于行駛速度(千米/每小時)的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中是自然對數(shù)的底數(shù),
(1)若,求曲線在點處的切線方程;
(2)若,求的單調(diào)區(qū)間;
(3)若,函數(shù)的圖象與函數(shù)的圖象有3個不同的交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某跳水運動員在一次跳水訓練時的跳水曲線為如圖所示的拋物線一段,已知跳水板長為2m,跳水板距水面的高為3m,=5m,=6m,為安全和空中姿態(tài)優(yōu)美,訓練時跳水曲線應在離起跳點m()時達到距水面最大高度4m,規(guī)定:以為橫軸,為縱軸建立直角坐標系.

(1)當=1時,求跳水曲線所在的拋物線方程;
(2)若跳水運動員在區(qū)域內(nèi)入水時才能達到壓水花的訓練要求,求達到壓水花的訓練要求時的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),
⑴ 求不等式的解集;
⑵ 如果關于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案