【題目】已知函數(shù),且,e為自然對(duì)數(shù)的底).

I)求函數(shù)的單調(diào)區(qū)間

(Ⅱ)若函數(shù)有兩個(gè)不同零點(diǎn),求a的取值范圍.

【答案】I)當(dāng)時(shí),增區(qū)間為,減區(qū)間為;當(dāng)時(shí),增區(qū)間為,減區(qū)間為;(Ⅱ).

【解析】

I,分兩種情況討論解不等式即可;

)因?yàn)?/span>有兩個(gè)正零點(diǎn),由(I)知上單調(diào)遞減,在上單調(diào)遞增.當(dāng),當(dāng),,所以只需,對(duì)于①直接解不等式,對(duì)于②,構(gòu)造,結(jié)合單調(diào)性解決.

I)由,知

①當(dāng)時(shí),定義域?yàn)?/span>,;

②當(dāng)時(shí),定義域?yàn)?/span>,

所以,當(dāng)時(shí),增區(qū)間為,減區(qū)間為;

當(dāng)時(shí),增區(qū)間為,減區(qū)間為;

(Ⅱ)因?yàn)?/span>有兩個(gè)正零點(diǎn),由(I)知

上單調(diào)遞減,在上單調(diào)遞增.

設(shè)時(shí),指數(shù)函數(shù)是爆炸增長,,

當(dāng),當(dāng),

因?yàn)?/span>有兩個(gè)正零點(diǎn),所以有,

由①得

對(duì)于②,令,

上單調(diào)遞增,且,由,

由②

綜上所述,

【點(diǎn)晴】

本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及已知函數(shù)零點(diǎn)個(gè)數(shù)求參數(shù)范圍的問題,考查學(xué)生邏輯推理能力,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁、戊5個(gè)文藝節(jié)目在三家電視臺(tái)播放,要求每個(gè)文藝節(jié)目只能獨(dú)家播放,每家電視臺(tái)至少播放其中的一個(gè),則不同的播放方案的種數(shù)為(

A.150B.210C.240D.280

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為支援武漢的防疫,某醫(yī)院職工踴躍報(bào)名,其中報(bào)名的醫(yī)生18人,護(hù)士12人,醫(yī)技6人,根據(jù)需要,從中抽取一個(gè)容量為n的樣本參加救援隊(duì),若采用系統(tǒng)抽樣和分層抽樣,均不用剔除人員.當(dāng)抽取n+1人時(shí),若采用系統(tǒng)抽樣,則需剔除1個(gè)報(bào)名人員,則抽取的救援人員為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),是奇函數(shù).

1)求實(shí)數(shù)m的值;

2)畫出函數(shù)的圖象,并根據(jù)圖象求解下列問題;

①寫出函數(shù)的值域;

②若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】春秋以前中國已有“抱甕而出灌”的原始提灌方式,使用提水吊桿——桔槔,后發(fā)展成轆轤.19世紀(jì)末,由于電動(dòng)機(jī)的發(fā)明,離心泵得到了廣泛應(yīng)用,為發(fā)展機(jī)械提水灌溉提供了條件.圖形如圖所示為灌溉抽水管道在等高圖的上垂直投影,在A處測(cè)得B處的仰角為37度,在A處測(cè)得C處的仰角為45度,在B處測(cè)得C處的仰角為53度,A點(diǎn)所在等高線值為20米,若BC管道長為50米,則B點(diǎn)所在等高線值為( )(參考數(shù)據(jù)

A.30B.50C.60D.70

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】作家馬伯庸小說《長安十二時(shí)辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個(gè)小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個(gè)紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且Snλn216n+m

1)當(dāng)λ2時(shí),求通項(xiàng)公式an;

2)設(shè){an}的各項(xiàng)為正,當(dāng)m15時(shí),求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,,的中點(diǎn).

(I)若上的一點(diǎn),且與直線垂直,求的值;

(Ⅱ)在(I)的條件下,設(shè)異面直線所成的角為45°,求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐系中,點(diǎn)繞極點(diǎn)順時(shí)針旋轉(zhuǎn)角得到點(diǎn).為原點(diǎn),極軸為軸非負(fù)半軸,并取相同的單位長度建立平面直角坐標(biāo)系,曲線逆時(shí)針旋轉(zhuǎn)得到曲線.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)點(diǎn)的極坐標(biāo)為,直線過點(diǎn)且與曲線交于,兩點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案