函數(shù)的導(dǎo)函數(shù)的圖象大致是(     )
A.B.
C.D.
C
本試題主要是考查了函數(shù)的導(dǎo)函數(shù)的圖像的形狀的判定。是一道中等試題。
因為

在一個周期內(nèi)先減后增,并且導(dǎo)函數(shù)為奇函數(shù),排除A,并且單調(diào)性是周期性出現(xiàn),因此可知選C.
解決該試題的關(guān)鍵是能理解導(dǎo)函數(shù)是奇函數(shù),并把導(dǎo)函數(shù)作為函數(shù),再求解導(dǎo)數(shù),進(jìn)而判定單調(diào)性得到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)設(shè)函數(shù).
(1)當(dāng)時,求的極值;
(2)當(dāng)時,求的單調(diào)區(qū)間;
(3)若對任意,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 
已知a∈R,函數(shù)f(x)=4x3-2ax+a.
(1)求f(x)的單調(diào)區(qū)間;
(2)證明:當(dāng)0≤x≤1時,f(x)+|2-a|>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分) 已知函數(shù)
(Ⅰ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)a的取值范圍.
(Ⅲ)求證:(其中,e是自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(I) 若,求的單調(diào)區(qū)間;
(II) 已知的兩個不同的極值點,且,若恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)為常數(shù))在上有最大值3,那么此函數(shù)在上的最小值為(    )
A.-29B.-37C.-5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)設(shè)函數(shù)。
(Ⅰ)若在定義域內(nèi)存在,而使得不等式能成立,求實數(shù)的最小值;
(Ⅱ)若函數(shù)在區(qū)間上恰有兩個不同的零點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分)設(shè)
(1)請寫出的表達(dá)式(不需證明);
(2)求的極值
(3)設(shè)的最大值為的最小值為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本大題12分)
已知函數(shù)上為單調(diào)遞增函數(shù).
(Ⅰ)求實數(shù)的取值范圍;
(Ⅱ)若,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案