14.已知函數(shù)f(x)=|x+2|+|x-m|.
(1)當(dāng)m=6時,解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=$\sqrt{ab}$,若對于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范圍.

分析 (1)利用絕對值的意義,分類討論,即可解不等式;
(2)求出ab≥2,f(x)min,即可求m的取值范圍.

解答 解:(1)當(dāng)m=6時,|x+2|+|x-6|≥12,
x<-2時,不等式化為-x-2-x+6≥12,∴x≤-4,此時x≤-4;
-2<x<6時,不等式化為x+2-x+6≥12,無解;
x≥6時,不等式化為x+2+x-6≥12,∴x≥8,此時x≥8;
綜上所述,不等式的解集為{x|x≤-4或x≥8};
(2)a>0,b>0,且$\frac{1}{a}$+$\frac{1}$=$\sqrt{ab}$≥2$\sqrt{\frac{1}{ab}}$,∴ab≥2(當(dāng)且僅當(dāng)a=b時取等號),
∵對于?a,b∈R*,?x0使f(x0)≤ab成立,
∴|2+m|≤2,
∴-4≤m≤0.

點評 本題考查不等式的解法,考查基本不等式的運用,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知R為實數(shù)集,集合A={x|x2-2x≥0},B={x|x>1},則(∁RA)∩B=(  )
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.△ABC中,角A,B,C的對邊分別為a,b,c,若a=$\frac{\sqrt{6}}{2}$b,A=2B,則cosB 等于( 。
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{6}}{5}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,則($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值為( 。
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在△ABC中,N、P分別是AC、BN的中點,設(shè)$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow$,則$\overrightarrow{AP}$=( 。
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點為F(3,0),過F點的直線l與雙曲線E交于A,B兩點,且AB的中點為P(-3,-6),則E的方程為( 。
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.i為虛數(shù)單位,若(1+i)$\overline{z}$=(1-i)2,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若cos($\frac{π}{4}$+θ)cos($\frac{π}{4}$-θ)=$\frac{1}{4}$,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合P={x∈N|1≤x≤5},集合Q={x∈R|x2-x-6<0},則P∩Q等于( 。
A.{1,2,3}B.{1,2}C.[1,2]D.[1,3)

查看答案和解析>>

同步練習(xí)冊答案