【題目】求下列不等式(組)的解集
(1)
(2)
(3)求解關(guān)于的不等式,其中)
【答案】(1) ;(2) ;(3)見詳解.
【解析】
(1)先根據(jù)一元二次不等式的解法求解出每一個(gè)一元二次不等式的解集,然后取交集即可得到不等式組的解集;
(2)先將分式型不等式轉(zhuǎn)化為整式型不等式,然后再根據(jù)一元二次不等式的解法求不等式的解集;
(3)先將不等式因式分解,然后分類討論與的大小關(guān)系,求解出不等式解集.
(1)因?yàn)?/span>,所以解得,
又因?yàn)?/span>,所以解得,
所以不等式組解集為:;
(2)因?yàn)?/span>,所以,所以,
解得:.
所以不等式的解集為:;
(3)因?yàn)?/span>,所以,
當(dāng)時(shí),解集為:,
當(dāng)時(shí),解集為: ,
當(dāng)時(shí),解集為:,
綜上可知:當(dāng)時(shí),解集為:;當(dāng)時(shí),解集為: ;當(dāng)時(shí),解集為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有一企業(yè)2007年建廠并開始投資生產(chǎn),年份代號(hào)為7,2008年年份代號(hào)為8,依次類推.經(jīng)連續(xù)統(tǒng)計(jì)9年的收入情況如下表(經(jīng)數(shù)據(jù)分析可用線性回歸模型擬合與的關(guān)系):
年份代號(hào)() | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
當(dāng)年收入(千萬元) | 13 | 14 | 18 | 20 | 21 | 22 | 24 | 28 | 29 |
(Ⅰ)求關(guān)于的線性回歸方程;
(Ⅱ)試預(yù)測(cè)2020年該企業(yè)的收入.
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù);
(1)討論的極值點(diǎn)的個(gè)數(shù);
(2)若,且恒成立,求的最大值.
參考數(shù)據(jù):
1.6 | 1.7 | 1.8 | |
4.953 | 5.474 | 6.050 | |
0.470 | 0.531 | 0.588 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,.
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)若函數(shù)僅在處有極值,求的取值范圍;
(3)若對(duì)于任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)預(yù)計(jì)全年分批購入電視機(jī)3600臺(tái),其中每臺(tái)價(jià)值2000元,每批購入的臺(tái)數(shù)相同,且每批均需付運(yùn)費(fèi)400元,儲(chǔ)存購入的電視機(jī)全年所付保管費(fèi)與每批購入的電視機(jī)的總價(jià)值(不含運(yùn)費(fèi))成正比,比例系數(shù)為,若每批購入400臺(tái),則全年需要支付運(yùn)費(fèi)和保管費(fèi)共43600元.
(1)求的值;
(2)請(qǐng)問如何安排每批進(jìn)貨的數(shù)量,使支付運(yùn)費(fèi)與保管費(fèi)的和最少?并求出相應(yīng)最少費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,bsinA=cosB.
(1)求角B的大。
(2)若b=2,△ABC的面積為,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分,(1)小問5分,(2)小問7分)
如圖,橢圓的左、右焦點(diǎn)分別為過的直線交橢圓于兩點(diǎn),且
(1)若,求橢圓的標(biāo)準(zhǔn)方程
(2)若求橢圓的離心率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,過的直線與交于,兩點(diǎn),點(diǎn)的坐標(biāo)為.當(dāng)軸時(shí),的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線、的斜率分別為、,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合,其中是復(fù)數(shù),若集合中任意兩數(shù)之積及任意一個(gè)數(shù)的平方仍是中的元素,則集合___________________;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com