【題目】設(shè)集合,其中是復(fù)數(shù),若集合中任意兩數(shù)之積及任意一個(gè)數(shù)的平方仍是中的元素,則集合___________________;

【答案】

【解析】

根據(jù)若集合中任意兩數(shù)之積及任意一個(gè)數(shù)的平方仍是中的元素,分兩種情況討論,一種兩者相乘等于自身的情況,第二種是均不等于自身情況,依次分析。

解:集合中任意兩數(shù)之積仍是中的元素

所以會(huì)出現(xiàn)兩者相乘等于自身的情況,也有可能均不等于自身情況

即其中有一項(xiàng)為或者

1)當(dāng)時(shí),

,則

所以,

又因?yàn)榧?/span>中任意一個(gè)數(shù)的平方仍是中的元素

所以,剩下的一個(gè)數(shù)必為-1,所以集合

當(dāng)時(shí),則必須

又因?yàn)榧?/span>中任意一個(gè)數(shù)的平方仍是中的元素

,

解得,,

所以,集合。

2)當(dāng)時(shí),三個(gè)等式相乘則得到

所以得到

,則三者必有一個(gè)為0,同(1)可得集合 。

,則得到,

當(dāng)時(shí),則可以得到,則不成立;

當(dāng)時(shí),則,不成立。

故集合M

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】求下列不等式(組)的解集

(1)

(2)

(3)求解關(guān)于的不等式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象沿著軸向左平移個(gè)單位,縱坐標(biāo)伸長(zhǎng)到原來(lái)的倍(橫坐標(biāo)不變)后得到函數(shù)的圖象,對(duì)于函數(shù)有以下四個(gè)判斷:

1)該函數(shù)的解析式為

2)該函數(shù)圖象關(guān)于點(diǎn)對(duì)稱;

3)該函數(shù)在上是增函數(shù);

4)若函數(shù)上的最小值為,則.

其中正確的判斷有(

A.個(gè)B.個(gè)C.個(gè)D.個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】試比較3-(n為正整數(shù))的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊邊長(zhǎng)為的正方形鐵皮,將其四個(gè)角各截去一個(gè)邊長(zhǎng)為的小正方形,然后折成一個(gè)無(wú)蓋的盒子.

(1)求出盒子的體積為自變量的函數(shù)解析式,并寫(xiě)出這個(gè)函數(shù)的定義域;

(2)如果要做一個(gè)容積是的無(wú)蓋盒子,那么截去的小正方形的邊長(zhǎng)是多少(精確度0.01,結(jié)果保留一位小數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面內(nèi)的“向量列”,如果對(duì)于任意的正整數(shù),均有,則稱此“向量列”為“等差向量列”,稱為“公差向量”.平面內(nèi)的“向量列”,如果且對(duì)于任意的正整數(shù),均有),則稱此“向量列”為“等比向量列”,常數(shù)稱為“公比”.

(1)如果“向量列”是“等差向量列”,用和“公差向量”表示;

2)已知是“等差向量列”,“公差向量”,,;是“等比向量列”,“公比”,.求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是圓的直徑,是圓上除、外的一點(diǎn),平面,四邊形為平行四邊形,,

1)求證:平面;

(2)當(dāng)三棱錐體積取最大值時(shí),求此刻點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)拋物線y22px(p0)的焦點(diǎn)F的直線交拋物線于點(diǎn)AB,交其準(zhǔn)線l于點(diǎn)C,若|BC|2|BF|,且|AF|3,則此拋物線的方程為(  )

A.y29xB.y26x

C.y23xD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,,,的中點(diǎn).

(1)證明:平面

(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案