12.若函數(shù)$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,則f(f(-2))=$\sqrt{2}$.

分析 先求出f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$,從而f(f(-2))=f($\frac{1}{2}$),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}-\frac{1}{x},x<0\\ 2\sqrt{x},x≥0\end{array}\right.$,
∴f(-2)=-$\frac{1}{-2}$=$\frac{1}{2}$,
f(f(-2))=f($\frac{1}{2}$)=2$\sqrt{\frac{1}{2}}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.《孫子算經(jīng)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五等諸侯,共分橘子六十顆,人別加三顆.問:五人各得幾何?”其意思為“有5個人分60個橘子,他們分得的橘子數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”這個問題中,得到橘子最多的人所得的橘子個數(shù)是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓的離心率e=$\frac{1}{2}$,一條準(zhǔn)線方程為x=4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若F1,F(xiàn)2為其左右兩個焦點,過F1的直線交橢圓于A、B兩點.
①若|AB|=2,求|AF2|+|BF2|的值;
②若∠F1AF2=30°,求△F1AF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.不等式$\frac{1}{x}$<-1的解集為( 。
A.{x|-1<x<0}B.{x|x<-1}C.{x|x>-1}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x2-(a+1)x+b.
(1)若f(x)<0的解集為(-1,3),求a,b的值;
(2)當(dāng)a=1時,若對任意x∈R,f(x)≥0恒成立,求實數(shù)b的取值范圍;
(3)當(dāng)b=a時,解關(guān)于x的不等式f(x)<0(結(jié)果用a表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某班舉行的聯(lián)歡會由5個節(jié)目組成,節(jié)目演出順序要求如下:節(jié)目甲不能排在第一個,并且節(jié)目甲必須和節(jié)目乙相鄰,則該班聯(lián)歡會節(jié)目演出順序的編排方案共有42種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a3=12,a11=-5,且任意連續(xù)三項的和均為11,則a2017=4;設(shè)Sn是數(shù)列{an}的前n項和,則使得Sn≤100成立的最大整數(shù)n=29.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知平面內(nèi)不共線的四點O,A,B,C滿足$\overrightarrow{OB}$=$\frac{1}{3}$$\overrightarrow{OA}$+$\frac{2}{3}$$\overrightarrow{OC}$,則$|\overrightarrow{AB}|:|\overrightarrow{BC}|$=( 。
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.5個人排成一排,要求甲排在中間,乙不排在兩端,記滿足條件的所有不同排法的種數(shù)為m.
(1)求m的值;
(2)求$(\sqrt{x}-\frac{2}{x})^{\frac{3m}{4}}$的展開式的常數(shù)項.

查看答案和解析>>

同步練習(xí)冊答案