求與直線3x+y+1=0垂直且在兩坐標(biāo)軸上截距之和為
2
3
的直線l的方程為
 
考點(diǎn):直線的截距式方程
專(zhuān)題:計(jì)算題,直線與圓
分析:根據(jù)垂直條件得出直線l的斜率,設(shè)出直線的截距式方程,兩坐標(biāo)軸上截距之和為
2
3
,求出兩個(gè)截距,確定直線l的方程.
解答: 解:直線3x+y+1=0的斜率為-3,
∵兩直線垂直,
∴直線l的斜率為
1
3
,
設(shè)直線l方程為
x
a
+
y
b
=1,則斜率k=-
b
a
=
1
3
,①
∵兩坐標(biāo)軸上截距之和為
2
3
,
∴a+b=
2
3
,②
聯(lián)立①②得,a=1,b=-
1
3
,
故直線方程為即x-3y-1=0.
故答案為:x-3y-1=0.
點(diǎn)評(píng):本題為直線方程的求解,設(shè)為截距式是解決問(wèn)題的關(guān)鍵,屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
x
-x+alnx(a∈R,a≠0).
(1)若a=
5
2
,求f(x)的極值;
(2)設(shè)函數(shù)g(x)=f(x)+x,求函數(shù)g(x)的單調(diào)區(qū)間;
(3)設(shè)函數(shù)f(x)在x=x1和x=x2(x1<x2)時(shí)取得極值,且
f(x2)-f(x1)
x2-x1
2e
e2-1
a-2(其中e是自然對(duì)數(shù)的底數(shù)),求證:x2≥e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知logkx,logmx,lognx滿足關(guān)系式2logmx=logkx+lognx,(x≠1),證明:n2=(kn) logkm

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
≠0,
b
≠0,且|
a
|
=|
b
|
=|
a
-
b
|
,則
a
a
+
b
所在直線的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,若S1,S3,S2成等差數(shù)列,則{an}的公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
1
x2-3x-4
的定義域?yàn)锳,函數(shù)g(x)=
2-|x+a|
的定義域?yàn)锽,若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=sin(x+
π
3
)+sinx的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-1-lnx.
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)比較(1+
1
2!
)(1+
1
3!
)…(1+
1
n!
)與e的大。╪∈N*,n>2,e是自然對(duì)數(shù)的底數(shù));
(Ⅲ)對(duì)于函數(shù)h(x)和g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,b,使得不等式h(x)≥kx+b和g(x)≤kx+b都成立,則稱(chēng)直線y=kx+b是函數(shù)h(x)和g(x)的“分界線”.設(shè)函數(shù)h(x)=
1
2
x2,g(x)=e[x-1-f(x)],試問(wèn)函數(shù)h(x)和g(x)是否存在“分界線”?若存在,求出常數(shù)k,b的值.若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題( 。
①函數(shù)y=x2-5x+4在x∈[-1,1]上的最大值為10,最小值為
9
4
;
②函數(shù)y=2x2-4x+1(2<x<4)的最大值為17,最小值為1;
③函數(shù)y=x3-12x(-3<x<4)的最大值為16,最小值為-16;
④函數(shù)y=x3-12x(-2<x<2)無(wú)最大值也無(wú)最小值.
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案