【題目】如圖,三棱柱中, 平面, 分別為和的中點, 是邊長為2 的正三角形, .
(1)證明: 平面;
(2)求二面角的余弦值.
【答案】(1)證明見解析;(2) .
【解析】試題分析:(1)取AB的中點H,連接HM,CH,證明四邊形CDMH是平行四邊形得出DM∥CH,從而有DM∥平面ABC;
(2)取BB1中點E,以E為原點建立坐標系,求出兩半平面的法向量,計算法向量的夾角即可得出二面角的大。
試題解析:(1)證明:取的中點,連接,
∵分別為和的中點,
∴, ,∴, ,
則四邊形是平行四邊形,則.
∵平面, 平面,∴平面;
(2)取中點,∵為等邊三角形, ∴.
又平面, ,∴平面,
建立以為坐標原點, 分別為軸的空間直角坐標系如圖:
則 , ,
則設(shè)平面的法向量為, , ,
則,即
令,則,即,
平面的法向量為, , ,
則,得,即,
令,則,即,
則 ,
即二面角的余弦值是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,扇形,圓心角的大小等于,半徑為2,在半徑上有一動點,過點作平行于的直線交弧于點.
(1)若是半徑的中點,求線段的大。
(2)設(shè),求面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題P:x1 , x2是方程x2﹣mx﹣1=0的兩個實根,且不等式a2+4a﹣3≤|x1﹣x2|對任意m∈R恒成立;命題q:不等式ax2+2x﹣1>0有解,若命題p∨q為真,p∧q為假,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng):
X | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程.
(2)回歸直線必經(jīng)過的一點是哪一點?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某特色餐館開通了美團外賣服務(wù),在一周內(nèi)的某特色菜外賣份數(shù)(份)與收入(元)之間有如下的對應(yīng)數(shù)據(jù):
外賣份數(shù)(份) | 2 | 4 | 5 | 6 | 8 |
收入(元) | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計外賣份數(shù)為12份時,收入為多少元.
注:①參考公式:線性回歸方程系數(shù)公式, ;
②參考數(shù)據(jù): , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點,動圓經(jīng)過點且和直線相切,記動圓的圓心的軌跡為曲線.
(1)求曲線的方程;
(2)設(shè)曲線上一點的橫坐標為,過的直線交于另一點,交軸于點,過點作的垂線交于另一點.若是的切線,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了準確地把握市場,做好產(chǎn)品生產(chǎn)計劃,對過去四年的數(shù)據(jù)進行整理得到了第年與年銷量(單位:萬件)之間的關(guān)系如表:
1 | 2 | 3 | 4 | |
12 | 28 | 42 | 56 |
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點圖擬合與的回歸模型,并用相關(guān)系數(shù)甲乙說明;
(Ⅲ)建立關(guān)于的回歸方程,預(yù)測第5年的銷售量約為多少?.
附注:參考數(shù)據(jù): , , .
參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘法估計公式分別為:
, .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.
寫出曲線的極坐標的方程以及曲線的直角坐標方程;
若過點(極坐標)且傾斜角為的直線與曲線交于, 兩點,弦的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù),
(1)當時,求不等式的解集;
(2)若不等式的解集為空集,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com