【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)= .
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時(shí),對(duì)于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
【答案】
(1)解:∵f(x)=ax﹣lnx,∴x>0, ,
∵x>0,
∴當(dāng)a≤0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),
當(dāng)a>0時(shí),若x> ,則f′(x)>0,∴f(x)在( ,+∞)上是增函數(shù),
若0<x< ,則f′(x)<0,∴f(x)在(0, )上是減函數(shù).
綜上所述,當(dāng)a≤0時(shí),f(x)在(0,+∞)上是減函數(shù),
當(dāng)a>0時(shí),f(x)在( ,+∞)上是增函數(shù),在(0, )上是減函數(shù).
(2)證明:當(dāng)a=e時(shí),f(x)=ex﹣lnx,
∴ ,∴x∈[1,e]時(shí),f′(x)>0恒成立.
f(x)=ex﹣lnx在[1,e]上是單調(diào)遞增函數(shù),∴f(x)min=f(1)=e,
令H(x)=e﹣g(x)=e﹣ ,則H′(x)= ,x∈[1,e]時(shí),H′(x)≤0,
∴H(x)在[1,e]上單調(diào)遞減,H(x)max=H(1)=e,
∴f(x)≥H(x),即f(x)≥e﹣g(x).
故a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e﹣g(x)恒成立.
(3)解:∵ ,a>1時(shí),由x∈[1,e],得f′(x)>0,
∴f(x)=ax﹣lnx在[1,e]上單調(diào)遞增,
f(x)min=f(1)=a,f(x)max=f(e)=ae﹣1,即f(x)的值域是[a,ae﹣1],
由h(x)=x2+1﹣lnx,得 ,∴x∈[1,e]時(shí),h′(x)>0,
h(x)在[1,e]上單調(diào)遞增,
∴h(x)min=h(1)=2,h(x)max=h(e)=e2,即h(x)的值域是[2,e2],
x1∈[1,e],x0∈[1,e],有f(x1)=h(x0),
∴f(x)的值域是h(x)的值域的子集,
∴ ,∴ .
∴a的取值范圍是[2,e+ ].
【解析】(1)推導(dǎo)出 ,由此利用導(dǎo)數(shù)性質(zhì)能討論函數(shù)f(x)的單調(diào)性.(2)當(dāng)a=e時(shí),f(x)=ex﹣lnx, ,由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能證明a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時(shí),f(x)≥e﹣g(x)恒成立.(3)由 ,a>1時(shí),求出f(x)的值域是[a,ae﹣1],由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.
【考點(diǎn)精析】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減;求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中, 平面, , , , , , .
(I)求異面直線與所成角的余弦值;
(II)求證: 平面;
(Ⅲ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某幾何體的俯視圖是如圖所示的矩形,正視圖是一個(gè)底邊長為8、高為4的等腰三角形,側(cè)視圖是一個(gè)底邊長為6、高為4的等腰三角形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新學(xué)年伊始,某中學(xué)學(xué)生社團(tuán)開始招新,某高一新生對(duì)“海濟(jì)公益社”、“理科學(xué)社”、“高音低調(diào)樂社”很感興趣,假設(shè)她能被這三個(gè)社團(tuán)接受的概率分別為 , , .
(1)求此新生被兩個(gè)社團(tuán)接受的概率;
(2)設(shè)此新生最終參加的社團(tuán)數(shù)為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)x(單位:千元)對(duì)年利潤y(單位:萬元)的影響,對(duì)近5年的宣傳費(fèi)xi和年利潤yi(i=1,2,3,4,5)進(jìn)行了統(tǒng)計(jì),列出了下表:
x(單位:千元) | 2 | 4 | 7 | 17 | 30 |
y(單位:萬元) | 1 | 2 | 3 | 4 | 5 |
員工小王和小李分別提供了不同的方案.
(1)小王準(zhǔn)備用線性回歸模型擬合y與x的關(guān)系,請(qǐng)你建立y關(guān)于x的線性回歸方程(系數(shù)精確到0.01);
(2)小李決定選擇對(duì)數(shù)回歸模擬擬合y與x的關(guān)系,得到了回歸方程: =1.450lnx+0.024,并提供了相關(guān)指數(shù)R2=0.995,請(qǐng)用相關(guān)指數(shù)說明選擇哪個(gè)模型更合適,并預(yù)測(cè)年宣傳費(fèi)為4萬元的年利潤(精確到0.01)(小王也提供了他的分析數(shù)據(jù) (yi﹣ i)2=1.15) 參考公式:相關(guān)指數(shù)R2=1﹣
回歸方程 = x+ 中斜率和截距的最小二乘法估計(jì)公式分別為 = , = ﹣ x,參考數(shù)據(jù):ln40=3.688, =538.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+ ,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公切線. (Ⅰ)求a、b的值;
(Ⅱ)試比較f(x)與g(x)的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自地面垂直向上發(fā)射火箭,火箭的質(zhì)量為m,試計(jì)算將火箭發(fā)射到距地面的高度為h時(shí)所做的功.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是常數(shù).
(1)當(dāng)時(shí),求函數(shù)的值域;
(2)當(dāng)時(shí),求方程的解集;
(3)若函數(shù)在區(qū)間上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖都是邊長為1的正方體疊成的幾何體,例如第(1)個(gè)幾何體的表面積為6個(gè)平方單位,第(2)個(gè)幾何體的表面積為18個(gè)平方單位,第(3)個(gè)幾何體的表面積是36個(gè)平方單位.依此規(guī)律,則第n個(gè)幾何體的表面積是個(gè)平方單位.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com