2.函數(shù)$f(x)=\sqrt{x}+1$的反函數(shù)是f-1(x)=(x-1)2(x≥1).

分析 根據(jù)反函數(shù)的定義,求出x關系y的函數(shù),把x與y互換,可得反函數(shù)的解析式.

解答 解:函數(shù)$f(x)=y=\sqrt{x}+1$,其定義域為{x|x≥0}.
解得:x=(y-1)2
把x與y互換可得y=(x-1)2
∴函數(shù)$f(x)=\sqrt{x}+1$的反函數(shù)位:f-1(x)=(x-1)2
故答案為:f-1(x)=(x-1)2.(x≥1)

點評 本題考查了反函數(shù)的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知f(x)=|2x-1|+|5x-1|
(1)求f(x)>x+1的解集;
(2)若m=2-n,對?m,n∈(0,+∞),恒有$\frac{1}{m}+\frac{4}{n}≥f(x)$成立,求實數(shù)x的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列函數(shù)中,在其定義域既是奇函數(shù)又是減函數(shù)的是(  )
A.y=|x|B.y=-x3C.y=($\frac{1}{2}$)xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設數(shù)列{an}是集合{x|x=3s+3t,s<t且s,t∈N}中所有的數(shù)從小到大排列成的數(shù)列,即a1=4,a2=10,a3=12,a4=28,a5=30,a6=36,…,將數(shù)列{an}中各項按照上小下大,左小右大的原則排成如圖的等腰直角三角形數(shù)表,則a15的值為324.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|),x∈R;
(1)求實數(shù)a、b的值;
(2)若不等式$f(x)+g(x)≥log_2^2k-2{log_2}k-3$對任意x∈R恒成立,求實數(shù)k的范圍;
(3)對于定義在[p,q]上的函數(shù)m(x),設x0=p,xn=q,用任意xi(i=1,2,…,n-1)將[p,q]劃分成n個小區(qū)間,其中xi-1<xi<xi+1,若存在一個常數(shù)M>0,使得不等式|m(x0)-m(x1)|+|m(x1)-m(x2)|+…+|m(xn-1)-m(xn)|≤M恒成立,則稱函數(shù)m(x)為在[p,q]上的有界變差函數(shù),試證明函數(shù)f(x)是在[1,3]上的有界變差函數(shù),并求出M的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.如圖,已知半徑為1的扇形AOB,∠AOB=60°,P為弧$\widehat{AB}$上的一個動點,則$\overrightarrow{OP}•\overrightarrow{AB}$取值范圍是[$-\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.如圖所示,沿河有A、B兩城鎮(zhèn),它們相距20千米,以前,兩城鎮(zhèn)的污水直接排入河里,現(xiàn)為保護環(huán)境,污水需經(jīng)處理才能排放,兩城鎮(zhèn)可以單獨建污水處理廠,或者聯(lián)合建污
水處理廠(在兩城鎮(zhèn)之間或其中一城鎮(zhèn)建廠,用管道將污水從各城鎮(zhèn)向污水處理廠輸送),依據(jù)經(jīng)驗公式,建廠的費用為f(m)=25•m0.7(萬元),m表示污水流量,鋪設管道的費用(包括管道費)$g(x)=3.2\sqrt{x}$(萬元),x表示輸送污水管道的長度(千米);
已知城鎮(zhèn)A和城鎮(zhèn)B的污水流量分別為m1=3、m2=5,A、B兩城鎮(zhèn)連接污水處理廠的管道總長為20千米;假定:經(jīng)管道運輸?shù)奈鬯髁坎话l(fā)生改變,污水經(jīng)處理后直接排入河中;請解答下列問題(結果精確到0.1)
(1)若在城鎮(zhèn)A和城鎮(zhèn)B單獨建廠,共需多少總費用?
(2)考慮聯(lián)合建廠可能節(jié)約總投資,設城鎮(zhèn)A到擬建廠的距離為x千米,求聯(lián)合建廠的總費用y與x的函數(shù)關系
式,并求y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.不等式$\frac{(x+4)(x+3)}{{{x^2}-5x+4}}<0$的解集為(-4,-3)∪(1,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若點P(2,4)在函數(shù)f(x)=logax的圖象上,點Q(m,16)在f(x)的反函數(shù)圖象上,則m=16.

查看答案和解析>>

同步練習冊答案