1.向量$\overrightarrow a$、$\overrightarrow b$滿足|$\overrightarrow a$|=2,|$\overrightarrow b$|=$\sqrt{2}$,($\overrightarrow a$+$\overrightarrow b$)⊥(2$\overrightarrow a$-$\overrightarrow b$),若θ為$\overrightarrow a$與$\overrightarrow b$的夾角,則cosθ=$-\frac{3\sqrt{2}}{2}$.

分析 可由$(\overrightarrow{a}+\overrightarrow)⊥(2\overrightarrow{a}-\overrightarrow)$得到$(\overrightarrow{a}+\overrightarrow)•(2\overrightarrow{a}-\overrightarrow)=0$,進(jìn)而求出$\overrightarrow{a}•\overrightarrow$的值,從而得出cosθ的值.

解答 解:$(\overrightarrow{a}+\overrightarrow)⊥(2\overrightarrow{a}-\overrightarrow)$;
∴$(\overrightarrow{a}+\overrightarrow)•(2\overrightarrow{a}-\overrightarrow)$
=$2{\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow-{\overrightarrow}^{2}$
=$8+\overrightarrow{a}•\overrightarrow-2$
=0;
∴$\overrightarrow{a}•\overrightarrow=-6$;
∴$cosθ=\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}=\frac{-6}{2\sqrt{2}}=-\frac{3\sqrt{2}}{2}$.
故答案為:$-\frac{3\sqrt{2}}{2}$.

點評 考查向量垂直的充要條件,向量數(shù)量積的運算,向量夾角的余弦公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列說法正確的是(  )
A.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,x2+x+1>0”
B.命題“若x2-3x+2=0,則x=1或x=2”的否命題是:“若x2-3x+2=0,則x≠1或x≠2”
C.直線l1:2ax+y+1=0,l2:x+2ay+2=0,l1∥l2的充要條件是$a=\frac{1}{2}$
D.命題“若x=y,則sinx=siny”的逆否命題是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)計算:sin$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)
(2)化簡:$\frac{{sin(5π-α)cos(α+\frac{3}{2}π)cos(π+α)}}{{sin(α-\frac{3}{2}π)cos(α+\frac{π}{2})tan(α-3π)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.f(x)是R上的以3為周期的奇函數(shù),且f(2)=0,則f(x)=0在[0,6]內(nèi)解的個數(shù)為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若復(fù)數(shù)z滿足$\frac{z+2i}{z}$=2+3i,其中i是虛數(shù)單位,則$\overline z$=( 。
A.$\frac{2}{5}$+$\frac{3}{5}$iB.$\frac{3}{5}$+$\frac{2}{5}$iC.$\frac{3}{5}$+$\frac{1}{5}$iD.$\frac{3}{5}$-$\frac{1}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)函數(shù)f(x),若對于在定義域內(nèi)存在實數(shù)x滿足f(-x)=-f(x),則稱函數(shù)f(x)為“局部奇函數(shù)”.若函數(shù)f(x)=4x-m•2x+m2-3是定義在R上的“局部奇函數(shù)”,則實數(shù)m的取值范圍是( 。
A.[1-$\sqrt{3}$,1+$\sqrt{3}$)B.[-1,2)C.[-2$\sqrt{2}$,2$\sqrt{2}$]D.[-2$\sqrt{2}$,1-$\sqrt{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x∈R,且x≠0,若x+x-1=3,猜想${x^{2^n}}+{x^{-{2^n}}}(n∈{N^*})$的個位數(shù)字是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)定義在R上的奇函數(shù)y=f(x),滿足對任意t∈R都有f(x)=f(1-x),且x∈(0,$\frac{1}{2}$]時,f(x)=2x2,則$f(3)+f({-\frac{5}{2}})$的值等于-0.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將參加夏令營的600名學(xué)生編號為:001,002,…600,采用系統(tǒng)抽樣方法抽取一個容量為50的樣本,且隨機(jī)抽得的號碼為003.這600名學(xué)生分住在三個營區(qū),從001到200住在第Ⅰ營區(qū),從201到500住在第Ⅱ營區(qū),從501到600住在第Ⅲ營區(qū),三個營區(qū)被抽中的人數(shù)依次為( 。
A.16,26,8B.17,24,9C.16,25,9D.17,25,8

查看答案和解析>>

同步練習(xí)冊答案