【題目】在三棱錐P—ABC中,PB平面ABC,ABBC,AB=PB=2,BC=2,E、G分別為PC、PA的中點(diǎn).
(1)求證:平面BCG平面PAC;
(2)假設(shè)在線段AC上存在一點(diǎn)N,使PNBE,求的值;
(3)在(2)的條件下,求直線與平面所成角的正弦值
【答案】(1)見解析;(2);(3)
【解析】
(1)由,,得平面,即可得到本題的結(jié)論;(2)由N為線段AC一點(diǎn),可設(shè)為,得,又由,可確定的取值,從而可得到本題答案;(3)求出平面的法向量,然后套入公式,即可得到本題答案.
(1) 因?yàn)?/span>平面,平面,所以,
又,,所以平面,則①,
又,為等腰直角三角形,G為斜邊的中點(diǎn),所以②,
又,所以平面,因平面,
則有平面平面 ;
(2)分別以為軸,建立空間直角坐標(biāo)系,
那么,因此,,設(shè),那么,
由,得,解得.
因此,因此;
(3)由(2)知,設(shè)平面的法向量為,則
,即,
令,得,因此,
設(shè)直線與平面所成角為,那么.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)求在區(qū)間上的最小值;
(3)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近些年學(xué)區(qū)房的出現(xiàn)折射出現(xiàn)行教育體制方面的弊端造成了教育資源的分配不均衡.為此某市出臺(tái)了政策:自2019年1月1日起,在該市新登記并取得房屋不動(dòng)產(chǎn)權(quán)證書的住房用于申請(qǐng)入學(xué)的將不再對(duì)應(yīng)一所學(xué)校,實(shí)施多校劃片.有關(guān)部門調(diào)查了該市某名校對(duì)應(yīng)學(xué)區(qū)內(nèi)建筑面積不同的戶型,得到了以下數(shù)據(jù):
(1)試建立房屋價(jià)格y關(guān)于房屋建筑面積的x的線性回歸方程;
(2)若某人計(jì)劃消費(fèi)不超過100萬元購(gòu)置學(xué)區(qū)房,根據(jù)你得到的回歸方程估計(jì)此人選房時(shí)建筑面積最大為多少?(保留到小數(shù)點(diǎn)后一位數(shù)字)
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校實(shí)行選科走班制度,張毅同學(xué)的選擇是物理生物政治這三科,且物理在 A 層班級(jí),生物在 B 層班級(jí),該校周一上午課程安排如下表所示,張毅選擇三個(gè)科目的課各上一節(jié), 另外一節(jié)上自習(xí),則他不同的選課方法有( )
第一節(jié) | 第二節(jié) | 第三節(jié) | 第四節(jié) |
地理 B 層 2 班 | 化學(xué) A 層 3 班 | 地理 A 層 1 班 | 化學(xué) A 層 4 班 |
生物 A 層 1 班 | 化學(xué) B 層 2 班 | 生物 B 層 2 班 | 歷史 B 層 1 班 |
物理 A 層 1 班 | 生物 A 層 3 班 | 物理 A 層 2 班 | 生物 A 層 4 班 |
物理 B 層 2 班 | 生物 B 層 1 班 | 物理 B 層 1 班 | 物理 A 層 4 班 |
政治 1 班 | 物理 A 層 3 班 | 政治 2 班 | 政治 3 班 |
A.8 種B.10 種C.12 種D.14 種
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的長(zhǎng)軸為,分別為橢圓C的左、右頂點(diǎn),P是橢圓C上異于的動(dòng)點(diǎn),且面積的最大值為.
(1)求橢圓C的方程;
(2)過點(diǎn)的直線l交橢圓C于兩點(diǎn),D為橢圓上一點(diǎn),O為坐標(biāo)原點(diǎn),且滿足,其中,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).設(shè)a=2,b=.
(1)求方程f(x)=2的根;
(2)若對(duì)于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求實(shí)數(shù)m的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來每周開車從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.
(1)求此人這三年以來每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;
(2)求此人這三年以來每周開車從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);
(3)以頻率估計(jì)概率,記此人在接下來的四周內(nèi)每周開車從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為,求的分布列以及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】福彩是利國(guó)利民游戲,其刮刮樂之《藍(lán)色奇跡》:如圖(1)示例,刮開票面看到最左側(cè)一列四個(gè)兩位數(shù)字為“我的號(hào)碼”,最上行四個(gè)兩位數(shù)為“中獎(jiǎng)號(hào)碼”,這八個(gè)兩位數(shù)是00至99這一百個(gè)數(shù)字隨機(jī)產(chǎn)生的,若兩個(gè)數(shù)字相同即中得其相交線上的獎(jiǎng)金,獎(jiǎng)金可以累加.小明買的一張《藍(lán)色奇跡》刮刮樂如圖(2),除了一個(gè)“我的號(hào)碼”外,他已經(jīng)刮開票面上其它所有數(shù)字,依據(jù)目前的信息,小明從這張刮刮樂得到的獎(jiǎng)金額高于600元的概率為(無所得稅)( )
圖(1) 圖(2)
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com