精英家教網 > 高中數學 > 題目詳情
20.如圖:在圖O內切于正三角形△ABC,則S△ABC=S△OAB+S△OAC+S△OBC=3•S△OBC,即$\frac{1}{2}•|{BC}|•h=3•\frac{1}{2}•|{BC}|•r$,即h=3r,從而得到結論:“正三角形的高等于它的內切圓的半徑的3倍”;類比該結論到正四面體,可得到結論:“正四面體的高等于它的內切球的半徑的a倍”,則實數a=( 。
A.2B.3C.4D.5

分析 利用等體積,即可得出結論.

解答 解:設正四面體的高為h,底面積為S,內切球的半徑為r,
則V=$\frac{1}{3}Sh$=4$•\frac{1}{3}Sr$,
∴h=4r.
故選:C.

點評 本題考查類比推理,考查等體積方法的運用,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

10.已知函數$f(x)=lg(\sqrt{1+4{x^2}}+2x)+1$,則$f(lg3)+f(lg\frac{1}{3})$=2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.若集合A={x|x≥1},B={x|x2≤4},則A∩B={x|1≤x≤2}..

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

8.下列函數中,定義域為R的是( 。
A.y=$-\frac{{\sqrt{5}}}{e^x}$B.y=$\sqrt{x+1}$C.y=lnxD.y=x-1

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.(1)已知向量$\overrightarrow a$,$\overrightarrow b$滿足$|{\overrightarrow a}|$=$|{\overrightarrow b}|$=3,且$\overrightarrow a$與$\overrightarrow b$的夾角為120°,求$|{\overrightarrow a+\overrightarrow b}|$,$|{2\overrightarrow a-\overrightarrow b}|$;
(2)已知非零向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a+3\overrightarrow b$與$7\overrightarrow a-5\overrightarrow b$互相垂直,$\overrightarrow a-4\overrightarrow b$與$\overrightarrow{7a}-2\overrightarrow b$互相垂直,求$\overrightarrow a$與$\overrightarrow b$的夾角.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.要得到函數y=sin2x的圖象,只要將函數y=sin(2x-$\frac{π}{3}$)的圖象( 。
A.向左平行移動$\frac{π}{3}$個單位B.向左平行移動$\frac{π}{6}$個單位
C.向右平行移動$\frac{π}{3}$個單位D.向右平行移動$\frac{π}{6}$個單位

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.在半徑為1的球面上有不共面的四個點A,B,C,D且AB=CD=x,BC=DA=y,CA=BD=z,則x2+y2+z2等于( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.已知函數f(x)=$\frac{x^2}{1-x}$(x≠1),數列{an}滿足a1=m(m≠1),an+1=f(an).
(Ⅰ)當m=-1時,寫出數列{an}的通項公式;
(Ⅱ)是否存在實數m,使得數列{an}是等比數列?若存在,求出所有符合要求的m的值;若不存在,請說明理由;
(Ⅲ)當0<m<$\frac{1}{2}$時,求證:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘積符號,如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.若n>0,則n+$\frac{4}{{n}^{2}}$的最小值為( 。
A.6B.5C.4D.3

查看答案和解析>>

同步練習冊答案