15.已知函數(shù)f(x)=sin(ωx+$\frac{π}{3}$)+2(ω>0)的圖形向右平移$\frac{π}{3}$個(gè)單位后與原圖象重合,則ω的最小值是( 。
A.6B.3C.$\frac{8}{3}$D.$\frac{4}{3}$

分析 函數(shù)y=sin(ωx+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個(gè)單位后與原圖象重合可判斷出$\frac{π}{3}$是周期的整數(shù)倍,由此求出ω的表達(dá)式,判斷出它的最小值.

解答 解:∵函數(shù)y=sin(ωx+$\frac{π}{3}$)的圖象向右平移$\frac{π}{3}$個(gè)單位后與原圖象重合,
∴$\frac{π}{3}$=n×$\frac{2π}{ω}$,n∈z,
∴ω=6n,n∈z,
又ω>0,故其最小值是6.
故選:A.

點(diǎn)評(píng) 本題考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,解題的關(guān)鍵是判斷出函數(shù)圖象的特征及此特征與解析式中系數(shù)的關(guān)系,由此得出關(guān)于參數(shù)的方程求出參數(shù)的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.過(guò)拋物線y2=2px(p>0)的焦點(diǎn)F,且傾斜角為$\frac{π}{4}$的直線與拋物線交于A,B兩點(diǎn),若弦AB的垂直平分線經(jīng)過(guò)點(diǎn)(0,2),則p等于$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.一個(gè)人帶著三只狼和三只羚羊過(guò)河,只有一條船,該船可容納一個(gè)人和兩只動(dòng)物.沒(méi)有人在的時(shí)候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會(huì)吃羚羊.該人如何才能將動(dòng)物轉(zhuǎn)移過(guò)河?請(qǐng)?jiān)O(shè)計(jì)算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.如圖,A1,A2為橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1的長(zhǎng)軸的左、右端點(diǎn),O為坐標(biāo)原點(diǎn),S,Q,T為橢圓上不同于A1,A2的三點(diǎn),直線QA1,QA2,OS,OT圍成一個(gè)平行四邊形OPQR,則|OS|2+|OT|2=( 。
A.5B.3+$\sqrt{5}$C.9D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2sinxcosx+2cos2x(x∈R).
(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A、B、C的對(duì)邊分另為a、b、c,且f(A)=2,b=2,$c=\sqrt{2}$,求△ABC的面積S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$,滿足$|\overrightarrow a|=4,|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=0$,$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$.
(1)求$|\overrightarrow a-2\overrightarrow b|$的值;
(2)求$|\overrightarrow c|$的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=lnx-ax.
(Ⅰ)若函數(shù)f(x)在(1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),函數(shù)$g(x)=f(x)+x+\frac{1}{2x}-m$有兩個(gè)零點(diǎn)x1,x2,且x1<x2.求證:x1+x2>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$的短軸的長(zhǎng)是( 。
A.3B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,它的一個(gè)頂點(diǎn)恰好是拋物線x2=4$\sqrt{2}$y的焦點(diǎn).
(1)求橢圓C的方程;
(2)直線x=2與橢圓交于P,Q兩點(diǎn),P點(diǎn)位于第一象限,A,B是橢圓上位于直線x=2兩側(cè)的動(dòng)點(diǎn).當(dāng)點(diǎn)A,B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,問(wèn)直線AB的斜率是否為定值,如果為定值,求出斜率的值;如果不為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案