10.若關(guān)于x的不等式|x+3|+|x-1|>a恒成立,則a的取值范圍是(-∞,4).

分析 由題意可得,|x+3|+|x-1|的最小值大于a;而由絕對值三角不等式求得|x+3|+|x-1|的最小值為4,從而求得a的范圍.

解答 解:∵關(guān)于x的不等式|x+3|+|x-1|>a恒成立,故|x+3|+|x-1|的最小值大于a.
而由|x+3|+|x-1||≥|(x+3)-(x-1)|=4,可得|x+3|+|x-1|的最小值為4,故有4>a,
故答案為:(-∞,4).

點評 本題主要考查絕對值三角不等式,函數(shù)的恒成立問題,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\sqrt{3}$bcosC+csinB=$\sqrt{3}$a.
(1)求角B的大;
(2)若函數(shù)f(x)=cos2x+$\sqrt{3}$sinxcosx,x∈R,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在極坐標系中,已知曲線C:ρ=$2\sqrt{2}$sin(θ-$\frac{π}{4}$),P為曲線C上的動點,定點Q(1,$\frac{π}{4}$).
(Ⅰ)將曲線C的方程化成直角坐標方程,并說明它是什么曲線;
(Ⅱ)求P、Q兩點的最短距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.若函數(shù)f(x)=(x-2)2|x-a|在區(qū)間[2,4]恒滿足不等式xf′(x)≥0,則實數(shù)a的取值范圍是(  )
A.(-∞,5]B.[2,5]C.[2,+∞)D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.某四棱錐的三視圖如圖所示,該四棱錐最長棱的棱長為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=x2+ax+b,a,b∈R,若2a+b=-4,證明:|f(x)|在區(qū)間[0,4]上的最大值M(a)≥4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a<0,0<b<1,則下列結(jié)論正確的是( 。
A.a>abB.a>ab2C.ab<ab2D.ab>ab2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)函數(shù)f(x)=lg(1-|x|)+$\frac{1}{{x}^{2}+1}$,則使得f(2x+1)≥f(x)成立的x的取值范圍是(-1,-$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.如圖給出的是計算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{2015}$的值的一個程序框圖,則圖中執(zhí)行框中的①處和判斷框中的②處應(yīng)填的語句是( 。
A.n=n+1,i>1009B.n=n+2,i>1009C.n=n+1,i>1008D.n=n+2,i>1008

查看答案和解析>>

同步練習冊答案