【題目】在底面是菱形的四棱錐中,.

1)證明:平面;

2)點在棱.

①如圖1,若點是線段的中點,證明:平面

②如圖2,若,在棱上是否存在點,使得平面?證明你的結(jié)論.

【答案】1)證明見解析;(2)①證明見解析;②存在,證明見解析

【解析】

1)首先根據(jù)題意得到是等邊三角形,根據(jù)勾股定理得到,,再根據(jù)線面垂直的判定即可證明平面.

(2)①根據(jù)三角形中位線即可得到,再根據(jù)線面平行的判定即可證明平面.②存在中點,使得平面,取中點,連結(jié).根據(jù)三角形中位線即可得到,即平面平面,再利用面面平行的性質(zhì)即可得到平面.

1)在菱形中,,

是等邊三角形.

,故菱形邊長為

中,,則

同理.

,

平面.

2)①連結(jié),連接.

在菱形中點又是線段的中點,

所以.

,,

.

②存在,中點.

中點,連結(jié).

,中點,則,

又∵,,∴.

同理.

又∵,,

所以平面平面,

平面.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),若以直角坐標(biāo)系中的原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為為實數(shù).

1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

2)若曲線與曲線有公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

當(dāng)時,取得極值,求的值并判斷是極大值點還是極小值點;

當(dāng)函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+)+cos(2x﹣)+cos2x﹣sin2x,xR.

(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;

2)求函數(shù)fx)在區(qū)間[﹣]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】①回歸分析中,相關(guān)指數(shù)的值越大,說明殘差平方和越大;

②對于相關(guān)系數(shù),越接近1,相關(guān)程度越大,越接近0,相關(guān)程度越;

③有一組樣本數(shù)據(jù)得到的回歸直線方程為,那么直線必經(jīng)過點;

是用來判斷兩個分類變量是否有關(guān)系的隨機變量,只對于兩個分類變量適合;

以上幾種說法正確的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面四邊形MNPQ中,MN,MP=1,MPMN,PQQM

Ⅰ)若PQ,求NQ的值;

Ⅱ)若∠MQN=30°,求sinQMP的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次演唱會上共10 名演員(每名演員都會唱歌或跳舞),其中7人能唱歌,6人會跳舞.

1)問既能唱歌又會跳舞的有幾人?

2)現(xiàn)要選出一個2人唱歌2人伴舞的節(jié)目,有多少種選派方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表.

優(yōu)秀

非優(yōu)秀

總計

甲班

10

乙班

30

總計

105

已知在全部105人中隨機抽取1人為優(yōu)秀的概率為.

(1)請完成上面的列聯(lián)表;(把列聯(lián)表自己畫到答題卡上)

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可靠性要求,能否認(rèn)為成績與班級有關(guān)系”?

參考公式:

P(K2k0)

0.10

0.05

0.025

0.010

k0

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,滿足,,數(shù)列滿足,,且.

1)求數(shù)列的通項公式;

2)求證:數(shù)列是等差數(shù)列,求數(shù)列的通項公式;

3)若,數(shù)列的前項和為,對任意的,都有,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案