【題目】請(qǐng)認(rèn)真閱讀下列程序框圖,然后回答問(wèn)題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結(jié)果;
(2)若輸出的結(jié)果中有5,求輸入的自然數(shù)n0的所有可能的值;
(3)若輸出的結(jié)果中,只有三個(gè)自然數(shù),求輸入的自然數(shù)n0的所有可能的值.
【答案】
(1)解:若輸入n0=0,則輸出的數(shù)為20,10,5,4,2
(2)解:由(1)知所輸出的最大數(shù)為20,最小數(shù)為2共5個(gè),輸入的n0越大,輸出的數(shù)越小,
所以要使輸出的數(shù)中有5,應(yīng)使 ≥5.
解得n0=0,1,2,3.
所以輸入的可能的n0值為0,1,2,3
(3)解:由(1)(2)可知要使結(jié)果只有三個(gè)數(shù),只能是5,4,2.
所以應(yīng)使5≤ <10.
解得1<n0≤3,即n0=3,2.
所以輸入的n0可能值為2,3
【解析】(1)模擬程序框圖的運(yùn)行過(guò)程,即可求出n0=0時(shí)輸出的數(shù);(2)由(1)分析可得要使輸出的數(shù)中有5,應(yīng)使 ≥5,即可得解;(3)分析程序的運(yùn)行過(guò)程,即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說(shuō)明才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)
平均每天鍛煉 | [0,10) | [10,20) | [20,30) | [30,40) | [40,50) | [50,60) |
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外課外體育運(yùn)動(dòng)時(shí)間在[40,60)上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面2×2列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的數(shù)學(xué)期望和方差.
參考公式: ,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 (其中n<15)的展開(kāi)式中第9項(xiàng),第10項(xiàng),第11項(xiàng)的二項(xiàng)式系數(shù)成等差數(shù)列.
(1)求n的值;
(2)寫出它展開(kāi)式中的所有有理項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知角α的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與x軸的非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn) .
(1)求sin2α﹣tanα的值;
(2)若函數(shù)f(x)=cos(x﹣α)cosα﹣sin(x﹣α)sinα,求函數(shù) 在區(qū)間 上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若框圖所給的程序運(yùn)行的結(jié)果為S=90,那么判斷框中應(yīng)填入的關(guān)于k的判斷條件是( )
A.k<7
B.k<8
C.k<9
D.k<10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3﹣2ex2+mx﹣lnx,記g(x)= ,若函數(shù)g(x)至少存在一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,e2+ ]
B.(0,e2+ ]
C.(e2+ ,+∞]
D.(﹣e2﹣ ,e2+ ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 分別是橢圓: ()的左、右焦點(diǎn),離心率為, , 分別是橢圓的上、下頂點(diǎn), .
(1)求橢圓的方程;
(2)過(guò)作直線與交于, 兩點(diǎn),求三角形面積的最大值(是坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com