【題目】已知函數(shù).
(1)若曲線在點處的切線斜率為1,求函數(shù)的單調(diào)區(qū)間;
(2)若時,恒成立,求實數(shù)的取值范圍.
【答案】(1)在上單調(diào)遞增;(2).
【解析】試題分析:(1)求出,由,∴,令求得 的范圍,可得函數(shù)增區(qū)間,求得 的范圍,可得函數(shù)的減區(qū)間;(2)時,恒成立等價于恒成立,討論、,兩種情況,分別利用導數(shù)研究函數(shù)的單調(diào)性,求出函數(shù)的最小值,解不等式即可的結(jié)果.
試題解析:(1)∵ ,∴,∴,
∴ ,記,∴,
當時,,單減;
當時,, 單增,
∴,
故恒成立,所以在上單調(diào)遞增
(2)∵,令,∴,
當時,,∴在上單增,∴.
。┊即時,恒成立,即,∴在上單增,
∴,,所以.
ⅱ)當即時,∵在上單增,且,
當 時,,
∴使,即.
當時,,即單減;
當時,,即單增.
∴ ,
∴,,由,∴.
記,
∴,∴在上單調(diào)遞增,
∴,∴.
綜上.
科目:高中數(shù)學 來源: 題型:
【題目】請認真閱讀下列程序框圖,然后回答問題,其中n0∈N.
(1)若輸入n0=0,寫出所輸出的結(jié)果;
(2)若輸出的結(jié)果中有5,求輸入的自然數(shù)n0的所有可能的值;
(3)若輸出的結(jié)果中,只有三個自然數(shù),求輸入的自然數(shù)n0的所有可能的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 的定義域為(﹣1,1),滿足f(﹣x)=﹣f(x),且f( )= .
(1)求函數(shù)f(x)的解析式;
(2)證明f(x)在(﹣1,1)上是增函數(shù);
(3)解不等式f(x2﹣1)+f(x)<0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,AA1B1B是圓柱的軸截面,C是底面圓周上異于A,B的一點,AA1=AB=2.
(1)求證:平面AA1C⊥平面BA1C;
(2)若AC=BC,求幾何體A1﹣ABC的體積V.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (x2﹣2ax+3).
(1)若f(x)的定義域為R,求a的取值范圍;
(2)若f(﹣1)=﹣3,求f(x)單調(diào)區(qū)間;
(3)是否存在實數(shù)a,使f(x)在(﹣∞,2)上為增函數(shù)?若存在,求出a的范圍?若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴建成一個更大的三角形花園AMN,要求點M在射線AP上,點N在射線AQ上,且直線MN過點C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問:DN取何值時,S取得最小值,并求出最小值;
(Ⅱ)若S不超過1764平方米,求DN長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設二次函數(shù),關于的不等式的解集有且只有一個元素.
(1)設數(shù)列的前項和,求數(shù)列的通項公式;
(2)記,則數(shù)列中是否存在不同的三項成等比數(shù)列?若存在,求出這三項,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù).
(1)當時, ,若當時, 恒成立,求的最小值;
(2)若的圖像關于對稱,且時, ,求當時, 的解析式;
(3)當時, .若對任意的,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓和直線: ,橢圓的離心率,坐標原點到直線的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知定點,若直線過點且與橢圓相交于兩點,試判斷是否存在直線,使以為直徑的圓過點?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com