精英家教網 > 高中數學 > 題目詳情

【題目】如圖,互相垂直的兩條公路AP、AQ旁有一矩形花園ABCD,現(xiàn)欲將其擴建成一個更大的三角形花園AMN,要求點M在射線AP上,點N在射線AQ上,且直線MN過點C,其中AB=36米,AD=20米.記三角形花園AMN的面積為S. (Ⅰ)問:DN取何值時,S取得最小值,并求出最小值;
(Ⅱ)若S不超過1764平方米,求DN長的取值范圍.

【答案】解:(Ⅰ)設DN=x米(x>0),則AN=x+20. 因為DC∥AB,所以△NDC∽△NAM
所以 ,
所以 ,即
所以
= ,當且僅當x=20時取等號.
所以,S的最小值等于1440平方米.
(Ⅱ)由 得x2﹣58x+400≤0.
解得8≤x≤50.
所以,DN長的取值范圍是[8,50]
【解析】(Ⅰ)由于DC∥AB得出△NDC∽△NAM,從而AN,AM用DN表示,利用三角形的面積公式表示出面積,再利用基本不等式求最值,注意等號何時取得.(Ⅱ)由S不超過1764平方米,建立不等式,從而可求DN長的取值范圍.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則輸出的k的值為(

A.7
B.6
C.5
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如下圖的程序框圖,如果輸入的,則輸出的( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列中. ,

(Ⅰ)求的通項公式;

(Ⅱ)求數列的前項和

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線在點處的切線斜率為1,求函數的單調區(qū)間;

(2)若時,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列是以2為首項的等差數列,且成等比數列.

(Ⅰ)求數列的通項公式及前項和

,求數列的前項之和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的最大值為 的圖象關于軸對稱.

(Ⅰ)求實數的值;

(Ⅱ)設,是否存在區(qū)間,使得函數在區(qū)間上的值域為?若存在,求實數的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列4個命題

,則的否命題是,則;

②若命題,則為真命題;

平面向量夾角為銳角,則的逆命題為真命題;

函數有零點函數上為減函數的充要條件.

其中正確的命題個數是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在等差數列中, ,其前項和為,等比數列的各項均為正數, ,且, .

(1)求數列的通項公式;

(2)令,設數列的前項和為,求)的最大值與最小值.

查看答案和解析>>

同步練習冊答案