【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.
【答案】(1),無極大值;(2);(3).
【解析】
(1)求得,即可判斷為函數(shù)的極小值點(diǎn),問題得解。
(2)“在上為單調(diào)函數(shù)”可轉(zhuǎn)化為:恒大于等于0或者恒小于等于0,即可轉(zhuǎn)化為:或在上恒成立,再轉(zhuǎn)化為在恒成立或在恒成立,求得,問題得解。
(3)構(gòu)造函數(shù),對(duì)的取值分類,當(dāng)時(shí),可判斷恒成立,即不滿足題意,當(dāng)時(shí),利用導(dǎo)數(shù)可判斷在單調(diào)遞增,結(jié)合,由題意可得:,問題得解
(1)因?yàn)?/span>.由得:,
當(dāng)時(shí),,當(dāng)時(shí),
所以為函數(shù)的極小值點(diǎn) .
(2),.
因?yàn)?/span>在上為單調(diào)函數(shù),
所以或在上恒成立,
等價(jià)于在恒成立,
又.當(dāng)且僅當(dāng)時(shí),等號(hào)成立
等價(jià)于,
即在恒成立,而.
綜上,m的取值范圍是.
(3)構(gòu)造函數(shù),
當(dāng)時(shí),,
所以在不存在,使得
當(dāng)時(shí),
因?yàn)?/span>,所以在恒成立,
故在單調(diào)遞增,
所以,又
所以只需,解之得,
故m的取值范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是直角梯形,和是兩個(gè)邊長(zhǎng)為2的正三角形,.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)設(shè)函數(shù),若在區(qū)間上有解,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若不等式恒成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn)的直線與拋物線交于兩點(diǎn),且,拋物線的準(zhǔn)線與軸交于,于點(diǎn),且四邊形的面積為,過的直線交拋物線于兩點(diǎn),且,點(diǎn)為線段的垂直平分線與軸的交點(diǎn),則點(diǎn)的橫坐標(biāo)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,已知,,底面,且,,為的中點(diǎn),在上,且.
(1)求證:平面平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(Ⅰ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最值;
(Ⅱ)若,是函數(shù)的兩個(gè)極值點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),直線是曲線的一條切線.
(1)求實(shí)數(shù)a的值;
(2)若對(duì)任意的x(0,),都有,求整數(shù)k的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com