過(guò)雙曲線左焦點(diǎn),傾斜角為的直線交雙曲線右支于點(diǎn),若線段的中點(diǎn)在軸上,則此雙曲線的離心率為( )
A. | B. | C.3 | D. |
D
解析試題分析:由于線段PF1的中點(diǎn)M落在y軸上,連接MF2,則|MF1|=|MF2|="|PM|=" |PF1|⇒△PF1F2為直角三角形,△PMF2為等邊三角形,于是|PF1|-|PF2|=|MF1|=2a,|F1F2|="2c=" |MF1|=2a⇒c= a,由c2=a2+b2可求得b= a,于是 雙曲線的漸近線方程可求。解:連接MF2,由過(guò)點(diǎn) PF1作傾斜角為30°,線段PF1的中點(diǎn)M落在y軸上得:|MF1|=|MF2|═|PM|=|PF1|,∴△PMF2為等邊三角形,△PF1F2為直角三角形,∵是|PF1|-|PF2|=|MF1|=2a,|F1F2|=2c=|MF1|=2a,∴c=a,又c2=a2+b2,∴3a2=a2+b2,∴b=a,∴雙曲線的離心率為故選 D.
考點(diǎn):雙曲線定義的靈活應(yīng)用
點(diǎn)評(píng):本題考查直線與圓錐曲線的位置關(guān)系,關(guān)鍵是對(duì)雙曲線定義的靈活應(yīng)用及對(duì)三角形△PMF2為等邊三角形,△PF1F2為直角三角形的分析與應(yīng)用,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知,則雙曲線與的( 。
A.實(shí)軸長(zhǎng)相等 | B.虛軸長(zhǎng)相等 | C.焦距相等 | D.離心率相等 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知直線交橢圓于兩點(diǎn),橢圓與軸的正半軸交于點(diǎn),若的重心恰好落在橢圓的右焦點(diǎn)上,則直線的方程是( )
A. | B. |
C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知A、B為拋物線上的不同兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若則直線AB的斜率為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
雙曲線過(guò)其左焦點(diǎn)F1作x軸的垂線交雙曲線于A,B兩點(diǎn),若雙曲線右頂點(diǎn)在以AB為直徑的圓內(nèi),則雙曲線離心率的取值范圍為
A.(2,+∞) | B.(1,2) |
C.(,+∞) | D.(1,) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
已知拋物線方程為,直線l的方程為,在拋物線上有一動(dòng)點(diǎn)到軸的距離為,到直線L的距離為,則的最小值為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè),是雙曲線的左右兩個(gè)焦點(diǎn),若在雙曲線的右支上存在一點(diǎn),使(為原點(diǎn))且,則雙曲線的離心率為( ).
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
橢圓的左、右焦點(diǎn)分別為、,若橢圓上恰好有6個(gè)不同的點(diǎn),使得為等腰三角形,則橢圓的離心率的取值范圍是( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
拋物線:(p>0)的焦點(diǎn)與雙曲線:的右焦點(diǎn)的連線交于第一象限的點(diǎn)。若在點(diǎn)處的切線平行于的一條漸近線。則( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com