分析 先設(shè)點(diǎn)P的坐標(biāo),然后根據(jù)動(dòng)點(diǎn)P到點(diǎn)F1(-2,0)的距離與P到點(diǎn)F2(2,0)的距離之比為定值a(a>0,且a≠1),列方程,即可求P點(diǎn)的軌跡方程.
解答 解:設(shè)點(diǎn)P的坐標(biāo)為(x,y),
則由題意得$\frac{\sqrt{(x+2)^{2}+{y}^{2}}}{\sqrt{(x-2)^{2}+{y}^{2}}}$=a,
所以動(dòng)點(diǎn)P的軌跡方程是$\frac{\sqrt{(x+2)^{2}+{y}^{2}}}{\sqrt{(x-2)^{2}+{y}^{2}}}$=a,
即(1-a2)x2+(1-a2)y2+(4+4a2)x+4-4a2=0.
故答案為(1-a2)x2+(1-a2)y2+(4+4a2)x+4-4a2=0.
點(diǎn)評 本題主要考查直接法求軌跡方程,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m⊥α,n⊥α,則m∥n | B. | m?α,α∥β,則m∥β | C. | m⊥α,n?α,則m⊥n | D. | m∥α,n?α,則m∥n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{2}{5}$ | C. | $\frac{11}{15}$ | D. | $\frac{4}{15}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -2 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P=F | B. | Q=F | C. | E=F | D. | Q=G |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com