13.已知數(shù)列{an}是等差數(shù)列,若a1=1,a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,這數(shù)列{an}的公差d等于(  )
A.1B.-2C.2D.-1

分析 利用等比數(shù)列與等差數(shù)列的通項公式即可得出.

解答 解:∵a1=1,a2+2,a4+4,a6+6構(gòu)成等比數(shù)列,
∴$({a}_{4}+4)^{2}$=(a2+2)(a6+6),
∴(5+3d)2=(3+d)(7+5d),
化為:(d+1)2=0,
解得d=-1.
故選:D.

點評 本題考查了等比數(shù)列與等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

15.直線x=-1與拋物線y2=2x的位置關(guān)系是相離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x•ex+e-x,x∈R.
(Ⅰ)求函數(shù)y=f(x)•ex的單調(diào)區(qū)間;
(Ⅱ)若對于任意的x>0,總有f(x)≥ax2+1,求實數(shù)a的取值范圍;
(Ⅲ)證明:對于任意的x1,x2,h其中x1<x2,h>0,總有f(x1)+f(x2)<f(x1-h)+f(x2+h).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知函數(shù)f(x)=x2+$\frac{1}{x}$+2在x=1處的導數(shù)等于( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在半徑為2,圓心角為變量的扇形OAB內(nèi)作一內(nèi)切圓P,再在扇形內(nèi)作一個與扇形兩半徑相切并與圓P外切的小圓Q,設圓P與圓Q的半徑之積為y.
(1)按下列要求寫出函數(shù)關(guān)系式:
①設∠AOB=2θ(0<θ<$\frac{π}{2}}$),將y表示成θ的函數(shù);
②設圓P的半徑x(0<x<1),將y表示成x的函數(shù).
(2)請你選用(1)中的一個函數(shù)關(guān)系式,求y的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若點P到點F1(-2,0)的距離與P到點F2(2,0)的距離之比為定值a(a>0,且a≠1),則點P的軌跡方程為(1-a2)x2+(1-a2)y2+(4+4a2)x+4-4a2=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.把函數(shù)y=32x+1圖象向右平移3個單位,然后圖象上所有點的橫坐標縮短到原來的$\frac{1}{3}$(縱坐標不變),再向左平移3個單位,最后,縱坐標擴大為原來的2倍(橫坐標不變)得到的圖象的解析式是2•36x+13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設α:-2<x<2,β:2a-2≤x<3a-1,且α是β的必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知ABC-A1B1C1是各條棱長均等于2的正三棱柱,D是側(cè)棱CC1的中點,點C1到平面AB1D的距離(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

同步練習冊答案