【題目】下列四個命題:

①函數(shù)的最大值為1

②已知集合,則集合A的真子集個數(shù)為3;

③若為銳角三角形,則有

函數(shù)在區(qū)間內單調遞增的充分必要條件.

其中正確的命題是______.(填序號)

【答案】②③④

【解析】

由二倍角公式結合正弦函數(shù)的性質判斷①;由集合的知識判斷②;由銳角三角形的定義以及正弦函數(shù)的單調性,結合誘導公式判斷③;由二次函數(shù)的圖象和性質,集合充分必要條件的定義判斷④.

,得的最大值為,故①錯誤;

,則集合的真子集為,共有三個,故②正確;

為銳角三角形,,則

上為增函數(shù),

同理可證,

,故③正確;

時,函數(shù)在區(qū)間的解析式為,由對稱軸可知,函數(shù)在區(qū)間內單調遞增

若函數(shù)在區(qū)間內單調遞增,結合二次函數(shù)的對稱軸,可知,則

函數(shù)在區(qū)間內單調遞增的充分必要條件.故④正確;

故答案為:②③④

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,已知動直線的參數(shù)方程:,(為參數(shù),) ,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)若直線與曲線恰好有2個公共點時,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處的切線方程;

(Ⅱ)當時,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐PABCD中,底面ABCD為矩形,PA⊥平面ABCD,EPD的中點.

1)證明:平面AEC;

2)設AP1,AD,三棱錐PABD的體積V,求A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體中,底面為菱形, , 相交于點,四邊形為直角梯形, , , ,平面底面.

(1)證明:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,求曲線在點處切線的方程;

(Ⅱ)求函數(shù)的單調區(qū)間;

(Ⅲ)當時,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,、是過點夾角為的兩條直線,且與圓心為,半徑長為的圓分別相切,設圓周上一點、的距離分別為、,那么的最小值為____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將編號為1,2,…,18的18名乒乓球運動員分配在9張球臺上進行單打比賽,規(guī)定每一張球臺上兩選手編號之和均為大于4的平方數(shù).記{7號與18號比賽}為事件p.則p為( 。

A. 不可能事件 B. 概率為的隨機事件

C. 概率為的隨機事件 D. 必然事件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐,平面平面,為棱上的一點,,為棱的中點,為棱上的一點,平面,是邊長為4的正三角形,.

(1)求證:平面平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案