的三個(gè)頂點(diǎn)是,,
(1)求BC邊的高所在直線方程; (2)求的面積S
(1)  (2)8
(1)設(shè)BC邊的高所在直線為l,由題知1 ――――2分
,              
又點(diǎn)在直線l
所以直線l的方程為 
 
(2)BC所在直線方程為: 即
點(diǎn)A(-1,4)到BC的距離 
         
   
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)
設(shè)橢圓的離心率,右焦點(diǎn)到直線的距離為坐標(biāo)原點(diǎn).
(I)求橢圓的方程;
(II)過(guò)點(diǎn)作兩條互相垂直的射線,與橢圓分別交于兩點(diǎn),證明點(diǎn)到直
的距離為定值,并求弦長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


已知、是橢圓的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,線段軸的交點(diǎn)滿足
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)橢圓的右焦點(diǎn)作直線l交橢圓于AB兩點(diǎn),交y軸于M點(diǎn),若
,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在極坐標(biāo)系中,已知圓C的圓心坐標(biāo)為(3,),半徑為1,點(diǎn)Q在圓C上運(yùn)動(dòng),O為極點(diǎn)。
(1)求圓C的極坐標(biāo)方程;
(2)若點(diǎn)在直線OQ上運(yùn)動(dòng),且滿足,求動(dòng)點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以點(diǎn)為圓心、雙曲線的漸近線為切線的圓的標(biāo)準(zhǔn)方程是____  __.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中,頂點(diǎn),的平分線的方程是.求頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.
(I)求橢圓的方程;
(II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;
(III)設(shè)軸交于點(diǎn),不同的兩點(diǎn)上,且滿足的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2014·蘇州調(diào)研]經(jīng)過(guò)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點(diǎn),則直線l的斜率k和傾斜角α的取值范圍分別為_(kāi)_______,________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

曲線在點(diǎn)(0,1)處的切線方程為              。

查看答案和解析>>

同步練習(xí)冊(cè)答案