【題目】如圖,已知為等邊三角形,為等腰直角三角形,.平面平面ABD,點E與點D在平面ABC的同側(cè),且,.FAD中點,連接EF.

1)求證:平面ABC;

2)求證:平面平面ABD.

【答案】1)見詳解;(2)見詳解

【解析】

1)取的中點,連接,可證出,由線面平行的判定定理即可證出;

2)首先證出平面ABD,再由(1)可證得平面ABD,根據(jù)面面垂直的判定定理即可證出.

1

的中點,連接,

FAD中點,

,,

四邊形為平行四邊形,,

又因為平面ABC,平面ABC

所以平面ABC.

2)由(1)點的中點,且為等邊三角形,

所以,

又因為.平面平面ABD,

所以平面ABC,所以,

,所以平面ABD,

,所以平面ABD,

平面AED

平面平面ABD.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,點在正方體的棱上(不含端點),給出下列五個命題:

①過點有且只有一條直線與直線,都是異面直線;

②過點有且只有一條直線與直線,都相交;

③過點有且只有一條直線與直線,都垂直;

④過點有無數(shù)個平面與直線,都相交;

⑤過點有無數(shù)個平面與直線,都平行;

其中真命題是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高三學生為了迎接高考,要經(jīng)常進行模擬考試,鍛煉應(yīng)試能力,某學生從升入高三到高考要參加次模擬考試,下面是高三第一學期某學生參加次模擬考試的數(shù)學成績表:

模擬考試第

考試成績

1)已知該考生的模擬考試成績與模擬考試的次數(shù)滿足回歸直線方程,若高考看作第次模擬考試,試估計該考生的高考數(shù)學成績;

2)把次模擬考試的成績單放在五個相同的信封中,從中隨機抽取個信封研究成績,求抽取的個信封中恰有個成績不等于平均值的概率.

參考公式:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線ab,c,若ab共面,bc共面,則ac共面;④若直線l上有一點在平面α外,則l在平面α.其中錯誤命題的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線,準線方程為,直線過定點)且與拋物線交于、兩點,為坐標原點.

1)求拋物線的方程;

2是否為定值,若是,求出這個定值;若不是,請說明理由;

3)當時,設(shè),記,求的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市對各老舊小區(qū)環(huán)境整治效果進行滿意度測評,共有10000人參加這次測評(滿分100分,得分全為整數(shù)).為了解本次測評分數(shù)情況,從中隨機抽取了部分人的測評分數(shù)進行統(tǒng)計,整理見下表:

組別

分組

頻數(shù)

頻率

1

3

0.06

2

15

0.3

3

21

4

3

0.12

5

0.1

合計

1.00

1)求出表中,,的值;

2)若分數(shù)在80(含80分)以上表示對該項目“非常滿意”,其中分數(shù)在90(含90分)以上表示“十分滿意”,現(xiàn)從被抽取的“非常滿意“人群中隨機抽取2人,求至少有一人分數(shù)是“十分滿意”的概率;

3)請你根據(jù)樣本數(shù)據(jù)估計全市的平均測評分數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若函數(shù)有四個零點,則的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù).

1)討論的單調(diào)性;

2)證明:當時,.

3)證明:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若有兩個極值點,且恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案