18.若tan(α+80°)=4sin420°,則tan(α+20°)的值為( 。
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{19}$D.$\frac{\sqrt{3}}{7}$

分析 由tan(α+80°)=4sin420°=4sin60°=2$\sqrt{3}$,利用構(gòu)造的思想,tan(α+20°)=tan[(α+80°)-60°]利用正切的和與差的公式打開可得答案.

解答 解:由tan(α+80°)=4sin420°=4sin60°=2$\sqrt{3}$,
那么:tan(α+20°)=tan[(α+80°)-60°]=$\frac{tan(α+80°)-tan60°}{1+tan(α+80°)tan60°}$=$\frac{2\sqrt{3}-\sqrt{3}}{1+2\sqrt{3}×\sqrt{3}}=\frac{\sqrt{3}}{7}$.
故選D.

點(diǎn)評 本題主要考查正切的和與差公式和誘導(dǎo)公式的化簡,利用了構(gòu)造的思想.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{x-1}{x+1}$,x∈[1,3]
(1)判斷函數(shù)的單調(diào)性,并用單調(diào)性的定義證明.
(2)求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.平行四邊形ABCD中,E為CD的中點(diǎn),動(dòng)點(diǎn)G在線段BE上,$\overrightarrow{AG}=x\overrightarrow{AB}+y\overrightarrow{AD}$,則2x+y=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.為得到函數(shù)y=2cos2x-$\sqrt{3}$sin2x的圖象,只需將函數(shù)y=2sin2x+1的圖象(  )
A.向左平移$\frac{π}{12}$個(gè)長度單位B.向右平移$\frac{π}{12}$個(gè)長度單位
C.向左平移$\frac{5π}{12}$個(gè)長度單位D.向右平移$\frac{5π}{12}$個(gè)長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.f(x)是周期為4的奇函數(shù).且f(-1)=2,求f(13).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若tanα=4sin420°,則tan(α-60°)的值為( 。
A.-$\frac{\sqrt{3}}{5}$B.$\frac{3\sqrt{3}}{5}$C.$\frac{\sqrt{3}}{7}$D.$\frac{\sqrt{3}}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{(a-3)x,x≥2}\\{({\frac{1}{6π}∫}_{-2}^{2}\sqrt{4-{t}^{2}}dt)^{x}-1,x<2}\end{array}\right.$,an=f(n)(n∈N*),若數(shù)列{an}是單調(diào)遞減數(shù)列,則實(shí)數(shù)a的取值范圍為(-∞,$\frac{8}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某地政府在該地一水庫上建造一座水電站,用泄流水量發(fā)電,如圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知X∈[0,120],歷年中日泄流量在區(qū)間[30,60)的年平均天數(shù)為156天,一年按364天計(jì).
(1)請把頻率直方圖補(bǔ)充完整;
(2)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬立方米的日泄流量才能夠運(yùn)行一臺發(fā)電機(jī),如60≤X<90時(shí)才夠運(yùn)行兩臺發(fā)電機(jī),若運(yùn)行一臺發(fā)電機(jī),每天可獲利潤4000元,若不運(yùn)行,則該臺發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù).問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺發(fā)電機(jī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若(1-2x)2017=a0+a1x+…a2017x2017(x∈R),則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值為-1.

查看答案和解析>>

同步練習(xí)冊答案