(14分)在直角坐標系中橢圓的左、右焦點分別為.其中也是拋物線的焦點,點在第一象限的交點,且.
(1)求的方程;(6分)
(2)平面上的點滿足,直線,且與交于兩點,若,求直線的方程. (8分)

(1).(2)。

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知圓過橢圓的兩焦點,與橢圓有且僅有兩個公共點;直線與圓相切 ,與橢圓相交于兩點記
(1)求橢圓的方程;
(2)求的取值范圍;
(3)求的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知直線l:  y="x-2" 與拋物線y2=2x相交于兩點A、B,
(1)求證:OA⊥OB
(2)求線段AB的長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題12分)
已知橢圓,斜率為的直線交橢圓兩點,且點在直線的上方,
(1)求直線軸交點的橫坐標的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)雙曲線C:-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.
(1)若直線m與x軸正半軸的交點為T,且·=1,求點T的坐標;
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設(shè)=λ·,若λ∈[-2,-1],求||(T為(1)中的點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓O:,點O為坐標原點,一條直線與圓O相切并與橢圓交于不同的兩點A、B
(1)設(shè),求的表達式;
(2)若,求直線的方程;
(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線C的方程C:y2 ="2" p x(p>0)過點A(1,-2).
(I)求拋物線C的方程,并求其準線方程;
(II)是否存在平行于OA(O為坐標原點)的直線l,使得直線l與拋物線C有公共點,且直線
OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過點,且與橢圓有相同焦點的橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 在直角坐標系中,點到點的距離之和是,點的軌跡是,直線與軌跡交于不同的兩點.⑴求軌跡的方程;⑵是否存在常數(shù)?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案