【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點MPC的中點.

(1)求證:PA∥平面BMD;

(2)求證:ADPB;

(3)若AB=PD=2,求點A到平面BMD的距離.

【答案】(1)詳見解析;(2)詳見解析;(3).

【解析】

(1)設(shè)ACBD交于點OMO為三角形PAC的中位線可得MOPA,再利用直線和平面平行的判定定理,證得結(jié)論.

(2)由PD⊥平面ABCD,可得PDAD,再由cos∠BAD,證得 ADBD,可證AD⊥平面PBD,從而證得結(jié)論.

(3)點A到平面BMD的距離等于點C到平面BMD的距離h,求出MN、MO的值,利用等體積法求得點C到平面MBD的距離h

(1)證明:設(shè)ACBD交于點O,則由底面ABCD是平行四邊形可得OAC的中點.

由于點MPC的中點,故MO為三角形PAC的中位線,故MOPA.再由PA不在平面BMD內(nèi),而MO在平面BMD內(nèi),

故有PA∥平面BMD

(2)由PD⊥平面ABCD,可得PDAD,平行四邊形ABCD中,∵∠BCD=60°,AB=2AD,

∴cos∠BADcos60°,∴ADBD

這樣,AD垂直于平面PBD內(nèi)的兩條相交直線,故AD⊥平面PBD,∴ADPB

(3)若ABPD=2,則AD=1,BDABsin∠BAD=2,

由于平面BMD經(jīng)過AC的中點,故點A到平面BMD的距離等于點C到平面BMD的距離.

CD得中點N,則MN⊥平面ABCD,且MNPD=1.

設(shè)點C到平面MBD的距離為h,則h為所求.

ADPB 可得BCPB,故三角形PBC為直角三角形.

由于點MPC的中點,利用直角三角形斜邊的中線等于斜邊的一半,可得MDMB,故三角形MBD為等腰三角形,

MOBD

由于PA,∴MO

VMBCDVCMBD 可得,MNBD×MO )×h,

故有 )×1h,

解得h

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直線坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù),a>0).在以坐標(biāo)原點為極點,x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(1)說明C1是哪一種曲線,并將C1的方程化為極坐標(biāo)方程;
(2)直線C3的極坐標(biāo)方程為θ=α0 , 其中α0滿足tanα0=2,若曲線C1與C2的公共點都在C3上,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對居民用水情況進(jìn)行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的a值;
(2)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù).說明理由;
(3)估計居民月均用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)fx)=ax2+x

(Ⅰ)當(dāng)a>0時,求證:對任意的x1x2R都有[fx1)+fx2)]成立;

(Ⅱ)當(dāng)x∈[0,2]時,|fx)|≤1恒成立,求實數(shù)a的取值范圍;

(Ⅲ)若a=,點pm,n2)(mZ,nZ)是函數(shù)y=fx)圖象上的點,求m,n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=f(x)的圖象上存在兩點,使得函數(shù)的圖象在這兩點處的切線互相垂直,則稱y=f(x)具有T性質(zhì).下列函數(shù)中具有T性質(zhì)的是( 。
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M的方程為x 2+y-22=1,直線l的方程為x-2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B

1APB=60°,試求點P的坐標(biāo);

2若P點的坐標(biāo)為2,1,過P作直線與圓M交于C,D兩點,當(dāng)時,求直線CD的方程;

3求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標(biāo)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,橢圓C: =1(a>b>0)的離心率是 ,拋物線E:x2=2y的焦點F是C的一個頂點.
(1)求橢圓C的方程;
(2)設(shè)P是E上的動點,且位于第一象限,E在點P處的切線l與C交與不同的兩點A,B,線段AB的中點為D,直線OD與過P且垂直于x軸的直線交于點M.
①求證:點M在定直線上;
②直線l與y軸交于點G,記△PFG的面積為S1 , △PDM的面積為S2 , 求 的最大值及取得最大值時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將邊長為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,AC長為 π,A1B1長為 ,其中B1與C在平面AA1O1O的同側(cè).

(1)求三棱錐C﹣O1A1B1的體積;
(2)求異面直線B1C與AA1所成的角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=4x , 則f(﹣ )+f(1)= 

查看答案和解析>>

同步練習(xí)冊答案