【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當0<x<1時,f(x)=4x , 則f(﹣ )+f(1)= .
【答案】-2
【解析】解:∵f(x)是定義在R上周期為2的奇函數(shù),∴f(﹣ )=f(﹣2﹣ )=f(﹣ )=﹣f( )
∵x∈(0,1)時,f(x)=4x ,
∴f(﹣ )=﹣2,
∵f(x)是定義在R上周期為2的奇函數(shù),
∴f(﹣1)=f(1),f(﹣1)=﹣f(1),
∴f(1)=0,
∴f(﹣ )+f(1)=﹣2.
故答案為:﹣2
根據(jù)f(x)是周期為2的奇函數(shù)即可得到f(﹣ )=f(﹣2﹣ )=f(﹣ )=﹣f( ),利用當0<x<1時,f(x)=4x , 求出f(﹣ ),再求出f(1),即可求得答案.;考查周期函數(shù)的定義,奇函數(shù)的定義,學(xué)會這種將自變量的值轉(zhuǎn)化到函數(shù)解析式f(x)所在區(qū)間上的方法.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,點M為PC的中點.
(1)求證:PA∥平面BMD;
(2)求證:AD⊥PB;
(3)若AB=PD=2,求點A到平面BMD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)資金投入.若該公司2015年全年投入研發(fā)資金130萬元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長12%,則該公司全年投入的研發(fā)資金開始超過200萬元的年份是( 。
(參考數(shù)據(jù):lg1.12=0.05,lg1.3=0.11,lg2=0.30)
A.2018年
B.2019年
C.2020年
D.2021年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:,直線過定點.
(1)若與圓相切,求的方程;
(2)若與圓相交于兩點,線段的中點為,又與的交點為,判斷是否為定值.若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,以O為極點,x軸的非負半軸為極軸建立極坐標系.已知點P的極坐標為,曲線C的參數(shù)方程為(α為參數(shù)).
(1)寫出點P的直角坐標及曲線C的直角坐標方程;
(2)若Q為曲線C上的動點,求PQ中點M到直線l:ρcos θ+2ρsin θ+1=0距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: =1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=﹣x+3與橢圓E有且只有一個公共點T.
(1)求橢圓E的方程及點T的坐標;
(2)設(shè)O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數(shù)λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)棱底面,底面三角形是正三角形,是中點,則下列敘述正確的是( )
A. 平面
B. 與是異面直線
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中東呼吸綜合征(簡稱MERS)是由一種新型冠狀病毒(MERS﹣CoV)引起的病毒性呼吸道疾。刂2015年6月1日,韓國中東呼吸綜合征感染者有43人,6月2日,韓國中東呼吸綜合征感染者新增2人,3日起每天的新感染者平均比前一天的新感染者增加1人.由于醫(yī)療部門采取措施,MERS病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少1人,到6月20日止,MERS的患者共有180人,問6月幾日感染MERS的新患者人數(shù)最多?并求這一天的新患者人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com