【題目】如圖三棱柱中,側(cè)面為菱形, .
(1)證明: ;
(2)若, ,求二面角的余弦值.
【答案】(1)見(jiàn)解析(2)
【解析】試題分析:(1)連接,交于點(diǎn),連接,可證平面,可得, ,進(jìn)而可得;(2)以為坐標(biāo)原點(diǎn), 的方向?yàn)?/span>軸正方向, 為單位長(zhǎng),建立空間直角坐標(biāo)系,分別可得兩平面的法向量,可得所求余弦值.
試題解析:(1)連接,交于點(diǎn),連接,因?yàn)閭?cè)面為菱形,所以,且為及的中點(diǎn),又,所以平面.由于平面,故,又,故 .
(2)因?yàn)?/span>,且為的中點(diǎn),所以.
又因?yàn)?/span>,所以,故,從而兩兩相互垂直, 為坐標(biāo)原點(diǎn), 的方向?yàn)?/span>軸正方向, 為單位長(zhǎng),建立空間直角坐標(biāo)系(圖略)
因?yàn)?/span>,所以為等邊三角形,又,則, . , ,設(shè)是平面的法向量,則
,即,設(shè)是平面的法向量,則,同理可取.
所以可取, ,
所以二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的函數(shù)f(x)=ax2+x.
(Ⅰ)當(dāng)a>0時(shí),求證:對(duì)任意的x1,x2∈R都有[f(x1)+f(x2)]成立;
(Ⅱ)當(dāng)x∈[0,2]時(shí),|f(x)|≤1恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅲ)若a=,點(diǎn)p(m,n2)(m∈Z,n∈Z)是函數(shù)y=f(x)圖象上的點(diǎn),求m,n.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將邊長(zhǎng)為1的正方形AA1O1O(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,如圖,AC長(zhǎng)為 π,A1B1長(zhǎng)為 ,其中B1與C在平面AA1O1O的同側(cè).
(1)求三棱錐C﹣O1A1B1的體積;
(2)求異面直線B1C與AA1所成的角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex-x2+2ax.
(1)若a=1,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績(jī)只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒(méi)有影響.
(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;
(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的離心率為,,分別為橢圓的左、右焦點(diǎn),過(guò)的直線與相交于、兩點(diǎn),的周長(zhǎng)為.
(1)求橢圓的方程;
(2)若橢圓上存在點(diǎn),使得四邊形為平行四邊形,求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時(shí),f(x)=4x , 則f(﹣ )+f(1)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)設(shè), ,若函數(shù)存在零點(diǎn),求的取值范圍;
(2)若是偶函數(shù),設(shè),若函數(shù)與的圖象只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時(shí),函數(shù)f(x)有極值-.
(1)求函數(shù)的解析式;
(2)若關(guān)于x的方程f(x)=k有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com