【題目】已知橢圓:的離心率為,且經(jīng)過(guò)點(diǎn).

1)求橢圓的方程;

2)直線與橢圓相交于兩點(diǎn),若,求為坐標(biāo)原點(diǎn))面積的最大值及此時(shí)直線的方程.

【答案】(1);(2的最大值為,

【解析】

1)根據(jù)橢圓的離心率和經(jīng)過(guò)的點(diǎn),以及列方程組,解方程組求得的值,進(jìn)而求得橢圓方程.2)設(shè)出直線的方程,聯(lián)立直線的方程和橢圓的方程,寫(xiě)出韋達(dá)定理,根據(jù)列方程,得到的關(guān)系式.求出面積的表達(dá)式,利用配方法求得面積的最大值,進(jìn)而求得直線的方程.

(1)由題意 解得 故橢圓的方程為.

(2)因?yàn)?/span>,若直線斜率不存在,則直線過(guò)原點(diǎn),

,不能構(gòu)成三角形,所以直線的斜率一定存在,

設(shè)直線的方程為,設(shè),

,得,

所以,.

因?yàn)?/span>,所以

,

,顯然,所以.

,得

點(diǎn)到直線的距離.因?yàn)?/span>面積,

所以

所以當(dāng)時(shí),有最大值8,即的最大值為,

此時(shí),所以直線的方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解人們對(duì)“2019年3月在北京召開(kāi)的第十三屆全國(guó)人民代表大會(huì)第二次會(huì)議和政協(xié)第十三屆全國(guó)委員會(huì)第二次會(huì)議”的關(guān)注度,某部門(mén)從年齡在15歲到65歲的人群中隨機(jī)調(diào)查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關(guān)注度非常髙的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如右表所示:

年齡

關(guān)注度非常高的人數(shù)

15

5

15

23

17

(Ⅰ)由頻率分布直方圖,估計(jì)這100人年齡的中位數(shù)和平均數(shù);

(Ⅱ)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,據(jù)此表,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“兩會(huì)”的關(guān)注度存在差異?

(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再?gòu)牧酥须S機(jī)選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.

45歲以下

45歲以上

總計(jì)

非常髙

一般

總計(jì)

參考數(shù)據(jù):

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有關(guān)于x的一元二次方程

a是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率;

a是從區(qū)間任取的一個(gè)數(shù),b是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,再將所得的圖象向下平移一個(gè)單位長(zhǎng)度得到函數(shù)的圖象,且的圖象與直線相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)任意恒成立,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)).

(I)討論函數(shù)的單調(diào)性;

(II)若上的恒成立,求的范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李莊村某社區(qū)電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:

方案一每戶每月收管理費(fèi)2元,月用電不超過(guò)30度,每度0.4元,超過(guò)30度時(shí),超過(guò)部分按每度0.5.

方案二不收管理費(fèi),每度0.48.

1求方案一收費(fèi)元與用電量(度)間的函數(shù)關(guān)系;

2小李家九月份按方案一交費(fèi)34元,問(wèn)小李家該月用電多少度?

3)小李家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少粉塵),并采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi).當(dāng)每個(gè)家庭月用電量不超過(guò)100千瓦時(shí)時(shí),按每千瓦時(shí)0.57元計(jì)算;當(dāng)月用電量超過(guò)100千瓦時(shí)時(shí),其中的100千瓦時(shí)仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分按每千瓦時(shí)0.5元計(jì)算.

1)設(shè)月用電x千瓦時(shí)時(shí),應(yīng)交電費(fèi)y元,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;

2)若某家庭一月份用電120千瓦時(shí),則應(yīng)交電費(fèi)多少元?

3)若某家庭第一季度繳納電費(fèi)的情況如下表:

月份

1

2

3

合計(jì)

交費(fèi)金額(元)

76

63

45.6

184.6

則這個(gè)家庭第一季度共用電多少千瓦時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)討論函數(shù)的單調(diào)性;

(2)證明:,恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形,,,且底面.

(1)證明:平面平面;

(2)若二面角,求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案