【題目】已知函數(shù),,.
(1)討論函數(shù)的單調(diào)性;
(2)證明:,恒成立.
【答案】(1)當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減;(2)證明見解析
【解析】
(1)可求得,分別在、、、四種情況下討論導函數(shù)的符號,從而得到原函數(shù)的單調(diào)性;(2)將不等式轉(zhuǎn)化為:,令,,利用導數(shù)求得和,可證得,從而證得結(jié)論.
(1),
①當時,
時,;時,
在上單調(diào)遞增,在上單調(diào)遞減
②當時,
和時,;時,
在和上單調(diào)遞增,在上單調(diào)遞減
③當時,
在上恒成立
在上單調(diào)遞增
④當時,
和時,;時,
在和上單調(diào)遞增,在上單調(diào)遞減
綜上所述:當時,在上單調(diào)遞增,在上單調(diào)遞減;當時,在和上單調(diào)遞增,在上單調(diào)遞減;當時,在上單調(diào)遞增;當時,在和上單調(diào)遞增,在上單調(diào)遞減
(2)對,恒成立即為:,
等價于:
令,則
時,;時,
在上單調(diào)遞減,在上單調(diào)遞增
令,則
時,;時,
在上單調(diào)遞增,在上單調(diào)遞減
綜上可得:,即在上恒成立
對,恒成立
科目:高中數(shù)學 來源: 題型:
【題目】鐵人中學高二學年某學生對其親屬30人飲食習慣進行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(Ⅰ)根據(jù)莖葉圖,幫助這位學生說明其親屬30人的飲食習慣;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:
主食蔬菜 | 主食肉類 | 合計 | |
50歲以下人數(shù) | |||
50歲以上人數(shù) | |||
合計人數(shù) |
(Ⅲ)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習慣與年齡有關(guān)系?
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且經(jīng)過點.
(1)求橢圓的方程;
(2)直線與橢圓相交于,兩點,若,求(為坐標原點)面積的最大值及此時直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解國產(chǎn)奶粉的知名度和消費者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市年與年這兩年銷售量前名的五個奶粉的銷量(單位:罐),繪制出如下的管狀圖:
(1)根據(jù)給出的這兩年銷量的管狀圖,對該超市這兩年品牌奶粉銷量的前五強進行排名(由高到低,不用說明理由);
(2)已知該超市年奶粉的銷量為(單位:罐),以,,這年銷量得出銷量關(guān)于年份的線性回歸方程為(,,年對應(yīng)的年份分別取),求此線性回歸方程并據(jù)此預測年該超市奶粉的銷量.
相關(guān)公式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某機構(gòu)為了解某地區(qū)中學生在校月消費情況,隨機抽取了100名中學生進行調(diào)查.右圖是根據(jù)調(diào)查的結(jié)果繪制的學生在校月消費金額的頻率分布直方圖.已知[350,450),[450,550),[550,650)三個金額段的學生人數(shù)成等差數(shù)列,將月消費金額不低于550元的學生稱為“高消費群” .
(1)求m,n的值,并求這100名學生月消費金額的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)根據(jù)已知條件完成下面2×2列聯(lián)表,并判斷能否有90%的把握認為“高消費群”與性別有關(guān)?
高消費群 | 非高消費群 | 合計 | |
男 | |||
女 | 10 | 50 | |
合計 |
(參考公式:,其中)
P() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)雙曲線的左、右焦點分別為. 若點P在雙曲線上,且為銳角三角形,則|PF1|+|PF2|的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有200人參加了一次會議,為了了解這200人參加會議的體會,將這200人隨機號為001,002,003,…,200,用系統(tǒng)抽樣的方法(等距離)抽出20人,若編號為006,036,041,176, 196的5個人中有1個沒有抽到,則這個編號是( )
A. 006B. 041C. 176D. 196
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】近年來,我國大力發(fā)展新能源汽車工業(yè),新能源汽車(含電動汽車)銷量已躍居全球首位.某電動汽車廠新開發(fā)了一款電動汽車,并對該電動汽車的電池使用情況進行了測試,其中剩余電量與行駛時間(單位:小時)的測試數(shù)據(jù)如下:
如果剩余電量不足,則電池就需要充電.
(1)從組數(shù)據(jù)中選出組作回歸分析,設(shè)表示需要充電的數(shù)據(jù)組數(shù),求的分布列及數(shù)學期望;
(2)根據(jù)電池放電的特點,剩余電量與時間工滿足經(jīng)驗關(guān)系式:,通過散點圖可以發(fā)現(xiàn)與之間具有相關(guān)性.設(shè),利用表格中的前組數(shù)據(jù)求相關(guān)系數(shù)的把握認為與之間具有線性相關(guān)關(guān)系.(當相關(guān)系數(shù)滿足時,則認為的把握認為兩個變量具有線性相關(guān)關(guān)系);
(3)利用與的相關(guān)性及前組數(shù)據(jù)求出與工的回歸方程.(結(jié)果保留兩位小數(shù))
附錄:相關(guān)數(shù)據(jù):,,,.
前9組數(shù)據(jù)的一些相關(guān)量:
合計 |
相關(guān)公式:對于樣本.其回歸直線的斜率和截距的最小二乘估計公式分別為:,,相關(guān)系數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com