【題目】為了解國(guó)產(chǎn)奶粉的知名度和消費(fèi)者的信任度,某調(diào)查小組特別調(diào)查記錄了某大型連鎖超市年與年這兩年銷售量前名的五個(gè)奶粉的銷量(單位:罐),繪制出如下的管狀圖:

(1)根據(jù)給出的這兩年銷量的管狀圖,對(duì)該超市這兩年品牌奶粉銷量的前五強(qiáng)進(jìn)行排名(由高到低,不用說(shuō)明理由);

(2)已知該超市奶粉的銷量為(單位:罐),以,年銷量得出銷量關(guān)于年份的線性回歸方程為,年對(duì)應(yīng)的年份分別取),求此線性回歸方程并據(jù)此預(yù)測(cè)年該超市奶粉的銷量.

相關(guān)公式:.

【答案】1)前五強(qiáng)排名為:,,,;(2)回歸直線為:;預(yù)測(cè)年該超市奶粉的銷量為罐.

【解析】

1)根據(jù)管狀圖,可求得五種奶粉兩年的銷量和,從而按照從多到少進(jìn)行排列即可;(2)根據(jù)已知數(shù)據(jù),利用最小二乘法求得回歸直線;代入,即可求得預(yù)測(cè)值.

1兩年銷量:;兩年銷量:;

兩年銷量:;兩年銷量:;

兩年銷量:

前五強(qiáng)排名為:,,,,

2)由題意得:,;

,

回歸直線為:

當(dāng)時(shí),

預(yù)測(cè)年該超市奶粉的銷量為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的最大值與最小值之和為a2+a+1(a>1).

(1)求a的值;

(2)判斷函數(shù)gx)=fx)-3在[1,2]的零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度后,再將所得的圖象向下平移一個(gè)單位長(zhǎng)度得到函數(shù)的圖象,且的圖象與直線相鄰兩個(gè)交點(diǎn)的距離為,若對(duì)任意恒成立,則的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】李莊村某社區(qū)電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:

方案一每戶每月收管理費(fèi)2元,月用電不超過(guò)30度,每度0.4元,超過(guò)30度時(shí),超過(guò)部分按每度0.5.

方案二不收管理費(fèi),每度0.48.

1求方案一收費(fèi)元與用電量(度)間的函數(shù)關(guān)系;

2小李家九月份按方案一交費(fèi)34元,問(wèn)小李家該月用電多少度?

3)小李家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少粉塵),并采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi).當(dāng)每個(gè)家庭月用電量不超過(guò)100千瓦時(shí)時(shí),按每千瓦時(shí)0.57元計(jì)算;當(dāng)月用電量超過(guò)100千瓦時(shí)時(shí),其中的100千瓦時(shí)仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分按每千瓦時(shí)0.5元計(jì)算.

1)設(shè)月用電x千瓦時(shí)時(shí),應(yīng)交電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;

2)若某家庭一月份用電120千瓦時(shí),則應(yīng)交電費(fèi)多少元?

3)若某家庭第一季度繳納電費(fèi)的情況如下表:

月份

1

2

3

合計(jì)

交費(fèi)金額(元)

76

63

45.6

184.6

則這個(gè)家庭第一季度共用電多少千瓦時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(x,y)在不等式組表示的平面區(qū)域內(nèi)運(yùn)動(dòng),z=x-y的取值范圍是(  )

A. [-2,-1] B. [-2,1] C. [-1,2] D. [1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,.

(1)討論函數(shù)的單調(diào)性;

(2)證明:恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳說(shuō)《西游記》中孫悟空的“如意金箍棒”原本是東海海底的一枚“定海神針”.作為兵器,“如意金箍棒”威力巨大,且只有孫悟空能讓其大小隨意變化。假定孫悟空在使用“如意金箍棒”與各路妖怪打斗時(shí),都將其變化為底面半徑為4至10之間的圓柱體。現(xiàn)假定孫悟空剛與一妖怪打斗完畢,并降伏了此妖怪,此時(shí)“如意金箍棒”的底面半徑為10,長(zhǎng)度為.在此基礎(chǔ)上,孫悟空使“如意金箍棒”的底面半徑以每秒1勻速縮短,同時(shí)長(zhǎng)度以每秒40勻速增長(zhǎng),且在這一變化過(guò)程中,當(dāng)“如意金箍棒”的底面半徑為8時(shí),其體積最大.

(1)求在這一變化過(guò)程中,“如意金箍棒”的體積隨時(shí)間(秒)變化的解析式,并求出其定義域;

(2)假設(shè)在這一變化過(guò)程中,孫悟空在“如意金箍棒”體積最小時(shí),將其定型,準(zhǔn)備迎戰(zhàn)下一個(gè)妖怪。求此時(shí)“如意金箍棒”的底面半徑。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓和拋物線,圓與拋物線的準(zhǔn)線交于兩點(diǎn),的面積為,其中的焦點(diǎn).

(1)求拋物線的方程;

(2)不過(guò)原點(diǎn)的動(dòng)直線交該拋物線于,兩點(diǎn),且滿足,設(shè)點(diǎn)為圓上任意一動(dòng)點(diǎn),求當(dāng)動(dòng)點(diǎn)到直線的距離最大時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案