△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,△ABC的面積.
(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=,求A.
(Ⅰ);(Ⅱ).
解析試題分析:(Ⅰ)首先利用余弦定理和面積公式將進(jìn)行化簡(jiǎn)求解;(Ⅱ)利用正弦定理將邊轉(zhuǎn)化角,然后利用兩角差的正弦公式展開(kāi)進(jìn)行合并求解.
試題解析:(Ⅰ)由余弦定理知c2-a2-b2=-2abcosC,
又△ABC的面積S=absinC= (c2-a2-b2),
所以absinC= (-2abcosC),得tanC=-.
因?yàn)?<C<π,所以C=. 6分
(Ⅱ)由正弦定理可知===2,
所以有a+b=2sinA+2sinB=2,sinA+sin(-A)=1,
展開(kāi)整理得,sin(+A)=1,且<+A<,所以A=. 12分
考點(diǎn):1.正弦定理和余弦定理;2.三角化簡(jiǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=cos 2x+2sin x·sin.
(1)求f(x)的最小正周期,最大值以及取得最大值時(shí)x的集合;
(2)若A是銳角三角形△ABC的內(nèi)角,f(A)=0,b=5,a=7,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,函數(shù).
(1)求的最值和單調(diào)遞減區(qū)間;
(2)已知在△ABC中,角A、B、C的對(duì)邊分別為,,求△ABC的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2,△ABC的面積為2,求b+c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知.
(Ⅰ)寫(xiě)出的最小正周期;
(Ⅱ)若的圖象關(guān)于直線對(duì)稱(chēng),并且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)△ABC的內(nèi)角所對(duì)的邊分別為,已知,,
(Ⅰ)求△ABC的周長(zhǎng);
(Ⅱ)求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com