8.已知α為常數(shù),冪函數(shù)f(x)=xα滿足$f(\frac{1}{3})=2$,則f(3)=( 。
A.2B.$\frac{1}{2}$C.$-\frac{1}{2}$D.-2

分析 利用待定系數(shù)法求出f(x)=${x}^{lo{g}_{\frac{1}{3}}2}$,由此能求出f(3).

解答 解:∵α為常數(shù),冪函數(shù)f(x)=xα滿足$f(\frac{1}{3})=2$,
∴f($\frac{1}{3}$)=$(\frac{1}{3})^{α}$=2,解得$α=lo{g}_{\frac{1}{3}}2$,
∴f(x)=${x}^{lo{g}_{\frac{1}{3}}2}$,
∴f(3)=${3}^{lo{g}_{\frac{1}{3}}2}$=$\frac{1}{2}$.
故選:B.

點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意冪函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓O:x2+y2=2,直線l:y=kx-2.
(1)若直線l與圓O交于不同的兩點A,B,當(dāng)$∠AOB=\frac{π}{2}$時,求k的值;
(2)若$k=\frac{1}{2},P$是直線l上的動點,過P作圓O的兩條切線PC、PD,切點為C、D,探究:直線CD是否過定點?若過定點則求出該定點,若不存在則說明理由;
(3)若EF、GH為圓O:x2+y2=2的兩條相互垂直的弦,垂足為$M({1,\frac{{\sqrt{2}}}{2}})$,求四邊形EGFH的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知平面上動點P到A(-$\sqrt{2}$,0)、B($\sqrt{2}$,0)兩點的距離之差的絕對值等于2.
(1)判斷動點P的軌跡是何種圓錐曲線,并求出其軌跡方程.
(2)設(shè)點M的坐標(biāo)為($\frac{3}{2}$,0),求點M到上述曲線的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列幾何體各自的三視圖中,只有兩個視圖相同的是( 。
A.①③B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)集合A={0,1,2},B={2,3},則A∪B=( 。
A.{0,1,2,3}B.{0,1,3}C.{0,1}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)={log_2}\frac{1-tanx}{1+tanx}$,若$f(\frac{π}{2}+a)=1$,則$f(\frac{π}{2}-a)$=( 。
A.1B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在△ABC中,M為BC的中點,$\overrightarrow{AN}=3\overrightarrow{NB}$.
(I)以$\overrightarrow{CA}$,$\overrightarrow{CB}$為基底表示$\overrightarrow{AM}$和$\overrightarrow{CN}$;
(II)若∠ABC=120°,CB=4,且AM⊥CN,求CA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若一個圓錐的底面半徑是母線長的一半,側(cè)面積的數(shù)值是它的體積的數(shù)值的$\frac{1}{2}$,則該圓錐的底面半徑為( 。
A.$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.極限$\underset{lim}{x→+∞}$$\frac{{x}^{8}(1+2x)^{6}}{(3x+1)^{14}}$=$\frac{64}{{3}^{14}}$.

查看答案和解析>>

同步練習(xí)冊答案