為雙曲線的左焦點,在軸上點的右側(cè)有一點,以為直徑的圓與雙曲線左、右兩支在軸上方的交點分別為,則的值為(     )

A. B. C. D.

D.

解析試題分析:設(m>4),F(xiàn)(-5,0).所以.因為,所以.即,又因為點M在雙曲線上,所以.代入前式可得.即.同理由N點的關系式可得.所以由橢圓和圓聯(lián)立可得方程,所以..又因為.同理=.又因為.所以.所以=.所以=.故選D.本題的解法較麻煩,運算量較大.主要是通過FM與AM垂直,得到的式子與FN與AN垂直得到的式子抽象出橢圓與圓的交點方程.再用韋達定理表示出FM與FN的長.再把所求的式子平方即可得到答案.

考點:1.向量的垂直.2.兩點間的距離的表示.3.韋達定理的應用.4.較繁雜的代數(shù)運算.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的兩個焦點為F1(-,0)、F2(,0),M是此雙曲線上的一點,且滿足則該雙曲線的方程是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知動點的坐標滿足方程,則的軌跡方程是(   )

A. B.
C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

拋物線上兩點關于直線對稱,且,則等于(   )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知雙曲線的離心率,則它的漸近線方程為(     )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖,在中,邊上的高分別為,垂足分別是,則以為焦點且過的橢圓與雙曲線的離心率分別為,則的值為(   )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線的焦點與橢圓的一個焦點重合,它們在第一象限內(nèi)的交點為,且軸垂直,則橢圓的離心率為(  )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線的準線過雙曲線的一個焦點,則雙曲線的離心率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線與雙曲線有相同的焦點F,點是兩曲線的交點,且軸,則的值為(  )

A.B.C.D.

查看答案和解析>>

同步練習冊答案