【題目】如圖,某旅游區(qū)擬建一主題游樂園,該游樂區(qū)為五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為主題游樂區(qū),四邊形區(qū)域?yàn)锽CDE為休閑游樂區(qū),AB、BC,CD,DE,EA,BE為游樂園的主要道路不考慮寬.

I求道路BE的長度;

求道路AB,AE長度之和的最大值.

【答案】; .

【解析】

試題分析:連結(jié),內(nèi),可根據(jù)余弦定理求,從而可以判斷的形狀,在內(nèi)根據(jù)勾股定理求;設(shè),,,在內(nèi),根據(jù)正弦定理,表示,,利用三角函數(shù)的有界性,得到長度和的最大值.

試題解析:如圖,連接,在中,由余弦定理得:

,

,

,,

,,

所以在中,;

設(shè),,,

中,由正弦定理,得

,

,

,,

,

當(dāng),即時(shí),取得最大值,

即道路長度之和的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長為2的正方形,點(diǎn),分別,中點(diǎn),將分別沿,起,使兩點(diǎn)重合于.

求證;

求四棱體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求圓的極坐標(biāo)方程;

(Ⅱ)直線的極坐標(biāo)方程是,射線與圓的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)恒成立,求實(shí)數(shù)的取值范圍;

(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1當(dāng)為常數(shù),且在區(qū)間變化時(shí),求的最小值

2證明:對任意的,總存在,使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解學(xué)生身高情況,某校以的比例對全校1000名學(xué)生按性別進(jìn)行分層抽樣調(diào)查,已知男女比例為,測得男生身高情況的頻率分布直方圖(如圖所示):

(1)計(jì)算所抽取的男生人數(shù),并估計(jì)男生身高的中位數(shù)(保留兩位小數(shù));

(2)從樣本中身高在之間的男生中任選2人,求至少有1人身高在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱,側(cè)面,,.

)求證;

二面角余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了保護(hù)環(huán)境,發(fā)展低碳經(jīng)濟(jì),某單位在國家科研部門的支持下,進(jìn)行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品,已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:,且每處理一頓二氧化碳得到可利用的化工產(chǎn)品價(jià)值為100元.

1)該單位每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?

2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家每月至少需要補(bǔ)貼多少元才能使該單位不虧損?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有兩枚均勻的硬幣和一枚不均勻的硬幣,其中不均勻的硬幣拋擲后出現(xiàn)正面的概率為,小華先拋擲這三枚硬幣,然后小紅再拋擲這三枚硬幣.

(1)求小華拋得一個(gè)正面兩個(gè)反面且小紅拋得兩個(gè)正面一個(gè)反面的概率;

(2)若用表示小華拋得正面的個(gè)數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案